

BID ADDENDUM NO. 1 - PHASE D

PROJECT:

EDISON TECHNICAL SCHOOL PHASE 2 -CONSTRUCTION PACKAGE 655 COLFAX STREET ROCHESTER, NY 14606

S.E.D. PROJECT 26-16-00-01-0-111-032 REVIEW NO. 17-0660 D.W.T. NO. 26-16-00-01-7-999-020

DATE:

June 28, 2019

FROM:

LaBella Associates, DPC 300 State Street Rochester, New York 14614

Include this Addendum as part of the Contract Documents. It supplements portions of the original specifications/project manual and drawings, the extent of which shall remain, except as revised herein:

BY:

Michael Ferreri, Project Manager LaBella Associates, P.C 300 State Street, Suite 201 Rochester, NY 14614 (585) 454-6110 (585) 454-3066 Fax E-Mail: <u>mferreri@labellapc.com</u>

CHANGES TO THE SPECIFICATIONS

- 1.10) ADD Section 002500 Hazardous Material Information
- 1.11) ADD Section 002500A Limited Pre-Renovation Regulated Materials Inspection
- **1.12)** ADD Section 003132 Geotechnical Information
- **1.13)** ADD Section 122413 Roller Window Shades

CHANGES TO THE DRAWINGS

GENERAL

1.14) -REMOVE Drawing GO01 Project Information in its entirety -ADD Drawing GO01 Project Information in its entirety

STRUCTURAL

- 1.15) -ADD Drawing S001 General Notes
- 1.16) -ADD Drawing S101 East Elevation Retaining Wall Repair
- 1.17) -ADD Drawing S102 East Elevation Retaining Wall Repair
- 1.18) -ADD Drawing S103 North Elevation Retaining Wall Repair
- 1.19) -ADD Drawing S104 North Elevation Retaining Wall Repair
- 1.20) -ADD Drawing S201 Chiller Support Framing Plan
- 1.21) -ADD Drawing S501 Retaining Wall Repair Details

ELECTRICAL

- **1.22)** -ADD Drawing E000 Electrical Notes, Symbols, & Abbreviations
- 1.23) -ADD Drawing E001 Electrical Site Plan Demo
- 1.24) -ADD Drawing E002 Electrical Site Plan
- 1.25) -ADD Drawing E012 Roof Electrical Demolition Plan Lightning Protection Area D, E, F, G, & H
- 1.26) -ADD Drawing E013 Roof Special Systems Plan Areas: D, E, F, G, & H
- 1.27) -ADD Drawing E101 Mechanical Room Electrical Demolition Plan
- 1.28) -ADD Drawing E102 Basement Electrical Demolition Plan Area G/H
- 1.29) -ADD Drawing E103 Roof and Penthouse 1 Electrical Demolition Plan
- **1.30** -ADD Drawing E104 Penthouse 3 and 5 Electrical Demolition and New Work Plan
- 1.31) -ADD Drawing E201 Mechanical Room Electrical Plan
- 1.32) -ADD Drawing E202 First Floor Electrical Special Systems Plan Areas: A, B, C, D & E
- 1.33) -ADD Drawing E203 First Floor Electrical Special Systems Plan Areas: F, G & H
- 1.34) -ADD Drawing E204 Basement Electrical Plan Area G/H
- 1.35) -ADD Drawing E205 Roof and Penthouse 1 Electrical Plan
- 1.36) -ADD Drawing E302B Second Floor Lighting Plan Area B
- **1.37)** -ADD Drawing E401 Enlarged Electrical Plans 1st and 2nd FLR

ATTACHMENTS

- Specification Sections:
 - o 002500 Hazardous Material Information

Bid Addendum No. 1 Edison Technical School Phase 2D - Construction Package June 28, 2019

- o 002500A Limited Pre-Renovation Regulated Materials Inspection
- o 003132 Geotechnical Information
- o 122413 Roller Window Shades
- Drawings:
 - G001 Project Information in its entirety
 - S001 General Notes
 - o S101 East Elevation Retaining Wall Repair
 - o S102 East Elevation Retaining Wall Repair
 - o S103 North Elevation Retaining Wall Repair
 - o S104 North Elevation Retaining Wall Repair
 - S201 Chiller Support Framing Plan
 - S501 Retaining Wall Repair Details
 - o E000 Electrical Notes, Symbols, & Abbreviations
 - o E001 Electrical Site Plan Demo
 - E002 Electrical Site Plan
 - o E012 Roof Electrical Demolition Plan Lightning Protection Area D, E, F, G, & H
 - E013 Roof Special Systems Plan Areas: D, E, F, G, & H
 - o E101 Mechanical Room Electrical Demolition Plan
 - o E102 Basement Electrical Demolition Plan Area G/H
 - E103 Roof and Penthouse 1 Electrical Demolition Plan
 - E104 Penthouse 3 and 5 Electrical Demolition and New Work Plan
 - E201 Mechanical Room Electrical Plan
 - E202 First Floor Electrical Special Systems Plan Areas: A, B, C, D & E
 - E203 First Floor Electrical Special Systems Plan Areas: F, G & H
 - E204 Basement Electrical Plan Area G/H
 - E205 Roof and Penthouse 1 Electrical Plan
 - E302B Second Floor Lighting Plan Area B
 - E401 Enlarged Electrical Plans 1st and 2nd FLR

SECTION 00 25 00 – Hazardous Material Information

PART 1 – GENERAL

- 1.1 SUMMARY
 - A. The attached Limited Pre-Renovation Regulated Building Materials Inspection report is provided for contractor reference.

PART 2 – PRODUCTS (Not Applicable)

PART 3 – EXECUTION (Not Applicable)

Engineering Architecture Environmental Planning

300 State Street, Suite 201 | Rochester, NY 14614 | p 585.454.6110 | f 585.454.3066 | www.labellapc.com

Limited Pre-Renovation Regulated Building Materials Inspection

Location:

Edison Technical School 655 Colfax Street Rochester, New York 14606

Prepared for:

Rochester Schools Modernization Program 1776 N. Clinton Avenue Rochester, New York 14621

LaBella Project No. 2170218

May 2017

Table of Contents

		Page
I.	Project Description	1
II.	Inspection Procedures	1
III.	Inspection Limitations	2
IV.	Inspection Results	2
V.	Observations & Cautionary Statements	3
Asbe	estos Bulk Sample Summary Table	T-1
Арре	endix A – Inspection Fact Sheet	FS-1
Арре	endix B – Sample Location Drawing	
Арре	endix C – Inspection Photos	
Арре	endix D – Laboratory Analytical Reports	
Арре	endix E – Licenses and Certifications	

I. Project Description

In accordance with current regulations, LaBella Associates, D.P.C. (LaBella) conducted a Limited Pre-Renovation Regulated Building Materials (RBM) Inspection of the areas scheduled to be impacted by upcoming Phase 2 renovations.

The objective was to identify suspect RBMs, such as Asbestos-Containing Materials (ACM), Lead-Based Paint (LBP), and PCB-containing caulking and glazing compounds which may require abatement or removal prior to or during renovation due to applicable regulations. The areas inspected were in conjunction with the upcoming Phase 2 renovation project.

Materials and locations understood to be impacted by this project were determined from information provided by LaBella's Architectural Division.

II. Inspection Procedures

The following procedures were used to obtain the data for this Report:

- A. Existing documentation was requested for review. Inspection results from sampling performed by LaBella on October 29th, 2015 were reviewed to develop an understanding of confirmed RBMs at the Site.
- B. A visual inspection of the Phase 2 Renovation areas was conducted to identify visible and accessible sources of the above referenced suspect RBMs. Photographs captured during this inspection are attached in Appendix C.
- C. Bulk samples of select RBMs were collected and submitted for laboratory analysis.
- D. Asbestos samples were submitted for laboratory analysis. Preliminary Polarized Light Microscopy analyses of non-friable, organically bound (NOB) materials were performed by LaBella Laboratories, a NYSDOH accredited laboratory, to determine the presence and percentage of asbestos in each sample. Transmission electron microscopy analyses of NOB materials, if necessary, were performed by AMA Laboratories.
- E. Suspect LBP was spot checked in the field using XRF testing procedures.
- F. Results of the laboratory analyses, field testing and the visual on-site inspection were compiled and summarized.

III. Inspection Limitations

This inspection was conducted in accordance with generally accepted environmental engineering practices for this region. Collection of bulk samples of suspect RBMs was limited to those materials readily accessible using hand tools or hand-held power tools. Homogeneous materials were identified and located based on visual observation from readily accessible points. The data derived from representative samples of any given homogeneous material represent conditions that apply only at that particular location. Inspection protocol and methodology requires that sample data be used to draw conclusions about the entire homogeneous area, but such conclusions may not necessarily apply to the general Site as a whole.

No sub-surface investigations were performed to determine the possible presence of regulated materials on or in the immediate vicinity of the Site. No record drawings of the building were available for review as part of this investigation.

LaBella makes no other warranty or representation, either expressed or implied, nor is one intended to be included as part of its services, proposals, contracts or reports. No inspection can wholly eliminate the uncertainty regarding the potential for undiscovered RBMs. The Work performed by LaBella is intended to reduce, but not eliminate, uncertainty regarding the potential for RBMs at the Site.

This inspection report is not intended to be a bid document for an abatement scope of work. This report is intended to satisfy the requirements of NYS Code Rule 56-5 for inspections. Abatement project design can only be performed by a certified Project Designer.

IV. Inspection Results

Asbestos-Containing Materials (ACMs)

Based on laboratory analyses of bulk samples collected, the following materials were determined to contain greater than 1% asbestos. However, the following table does not include all of the materials sampled during this inspection; for a full list of materials sampled see the Asbestos Bulk Sample Summary Table immediately following this report:

Type of Material	Typical Location ¹	Estimated Amount ²	Friability	Condition
Tan Sheet Vinyl and Associated Mastic	Flooring in Rooms 1A5 and 1A11	340 SF	Non-Friable	Good

Sheet Vinyl and Associated Mastic

Tan asbestos-containing sheet vinyl and its associated tan asbestos-containing mastic is located on the floor of rooms 1A5 and 1A11. The sheet vinyl and mastic are generally in good condition, and cover an area of approximately 180 square feet in room 1A5, and 160 square feet in room 1A11.

¹ Typical Location may not be inclusive of all material locations present at the subject structure.

² For general reference only: Quantities reflect only those materials understood to be impacted by the project as identified by LaBella's Architectural Division. Estimated amounts of confirmed ACM listed above were obtained through field observations made during site visits. Quantities are approximations and LaBella assumes no responsibility if used for bidding.

PCB-Containing Materials

Caulking and Glazing Compounds

It has recently been discovered that certain caulking and glazing compounds have the potential to contain PCBs. Caulking and glazing compounds containing equal to or greater than 50 ppm PCB must be disposed of as PCB-Contaminated hazardous waste. Therefore, several caulking and glazing compounds were observed, sampled and analyzed for the presence of PCBs. Based on laboratory analysis, these caulking and glazing compounds are *not* considered to be PCB-Contaminated (i.e. NOT \geq 50 ppm PCBs).

Lead – Based Paint

Several representative painted surfaces were tested for the presence of lead-based paint using XRF testing procedures. The following components were found to be positive for the presence of lead:

- Red painted interior doors and frames
- Orange painted lockers

In accordance with Environmental Protection Agency (EPA) protocols, no other materials were found to contain lead above the action level thresholds of 1.0 mg/cm^2 and 0.5% by weight.

The buildings and spaces inspected for this project do not include or comprise residential spaces applicable to the requirements of EPA lead-based paint management regulations. Therefore, EPA 40 Code of Federal Regulations (CFR) 745: Lead-Based Paint Renovation, Repair and Painting (RRP) Program Rule requirements do not apply. However, lead was detected at low concentrations in a variety of building materials (i.e., red exterior doors and door frames, red lockers, overhead doors). Renovation and demolition contractors should be informed of the presence of lead for OSHA compliance considerations.

V. Observations and Cautionary Statements

Grey Vermiculite

Vermiculite has been used as loose insulation in attics, walls, CMU block, and as a component of plaster, fireproofing and other building materials. The NYS Department of Health considers Vermiculite to be an asbestos-containing material, and that building materials containing more than 10% Vermiculite should be treated as asbestos-containing.

Vermiculite was not observed in spaces and materials inspected for this project. Testing for Vermiculite was performed at various locations throughout the inspected area by drilling into the CMU cavities. No loose fill Vermiculite was observed.

Cautionary measures should be taken during construction, renovation, and demolition to ensure that proper steps are taken if Vermiculite is discovered in previously inaccessible locations. If Vermiculite is discovered, work should be stopped immediately to address the issue and prevent the uncontrolled release and distribution of an asbestos-containing material.

Potentially Hidden/Inaccessible RBMs

As stated earlier, collection of bulk samples of suspect RBMs was limited to those materials readily accessible. Since the building is occupied and in operation as a school open to the public, destructive sampling techniques were used, but in a limited fashion, in order to minimize disruption to business operations and damage to building components.

Although this inspection was conducted in a manner consistent with recognized professional practices, the potential does exist for additional RBMs to be inaccessible, hidden, and undiscovered in the area inspected.

J:\Rochester Joint Schools Construction Board\2170218 - Edison Tech Phase 2\Environmental\Report\RBM Report Boiler 2016.doc

Asbestos Bulk Sample Summary Tables

Asbestos Bulk Sample Summary Table

Edison Technical High School Phase 2 Renovation Project

Sample #	Type of Material	Sample Location	Results % Asbestos
ET-1A	Black EPDM Layer	Roof System Above Stair 1 Stairwell	None Detected
ET-1B	Black EPDM Layer	Roof System Above Stair 1 Stairwell	None Detected
ET-2A	Tan Fiber Board	Roof System Above Stair 1 Stairwell	None Detected
ET-2B	Tan Fiber Board	Roof System Above Stair 1 Stairwell	None Detected
ET-3A	Yellow Insulation	Roof System Above Stair 1 Stairwell	None Detected
ET-3B	Yellow Insulation	Roof System Above Stair 1 Stairwell	None Detected
ET-4A	Black Tar Paper	Roof System Above Stair 1 Stairwell	None Detected
ET-4B	Black Tar Paper	Roof System Above Stair 1 Stairwell	None Detected
ET-5A	Gray Roof Caulk	Roof System Above Stair 1 Stairwell	None Detected
ET-5B	Gray Roof Caulk	Roof System Above Stair 1 Stairwell	None Detected
ET-6A	Black Tar	Roof System Above Stair 1 Stairwell	None Detected
ET-6B	Black Tar	Roof System Above Stair 1 Stairwell	None Detected
ET-7A	Gray 2x2 Speckled Ceiling Tile	Room 1A3 Suspended Ceiling	None Detected
ET-7B	Gray 2x2 Speckled Ceiling Tile	Room 1A3 Suspended Ceiling	None Detected
ET-8A	Gray Mudded Fitting	Room 1A3 Pipe Fitting	None Detected
ET-8B	Gray Mudded Fitting	Room 1A6 Pipe Fitting	None Detected
ET-8C	Gray Mudded Fitting	Room 1C12 Pipe Fitting	None Detected
ET-9A	Gray 2x2 Flat Ceiling Tile	Room 1A3 Suspended Ceiling	None Detected
ET-9B	Gray 2x2 Flat Ceiling Tile	Room 1A5 Suspended Ceiling	None Detected

Asbestos Bulk Sample Summary Table

Edison Technical High School Phase 2 Renovation Project

Sample #	Type of Material	Sample Location	Results % Asbestos
ET-10A	Tan Ceramic Mastic	Room 1A1 Sink Wall	None Detected
ET-10B	Tan Ceramic Mastic	Room 1A1 Sink Wall	None Detected
ET-11A	White Ceramic Grout	Room 1A1 Sink Wall	None Detected
ET-11B	White Ceramic Grout	Room 1A1 Sink Wall	None Detected
ET-12A	Brown Caulking Compound	Room 1A1 Exterior Side of Exterior Door	None Detected
ET-12B	Brown Caulking Compound	Room 1A1 Exterior Side of Exterior Door	None Detected
ET-13A	Dark Brown Caulking Compound	Room 1A1 Interior Side of Exterior Door	None Detected
ET-13B	Dark Brown Caulking Compound	Room 1C2 Interior Side of Exterior Door	None Detected
ET-14A	Brown Cove Base mastic	Room 1A5 Cove Base	None Detected
ET-14B	Brown Cove Base mastic	Room 1A11 Cove Base	None Detected
ET-15A	Tan Sheet Vinyl	Room 1A5 Floor	25% Chrysotile
ET-15B	Tan Sheet Vinyl	Room 1A11 Floor	Not Analyzed Stop Positive
ET-16A	Tan Sheet Vinyl Mastic	Room 1A5 Floor	3% Chrysotile
ET-16B	Tan Sheet Vinyl Mastic	Room 1A11 Floor	Not Analyzed Stop Positive
ET-17A	Black Glazing Compound	Room 1A1 Interior Door Transum Window	None Detected
ET-17B	Black Glazing Compound	Room 1A2 Interior Door Transum Window	None Detected
ET-18A	Light Gray 2x2 Ceiling Tile	Room 1A7 Vestibule Drop Ceiling	None Detected
ET-18B	Light Gray 2x2 Ceiling Tile	Room 1A7 Vestibule Drop Ceiling	None Detected
ET-19A	Gray Drywall	Room 1A18A Wall	None Detected

Asbestos Bulk Sample Summary Table

Edison Technical High School Phase 2 Renovation Project

Sample #	Type of Material	Sample Location	Results % Asbestos
ET-19B	Gray Drywall	Room 1A18 Wall	None Detected
ET-20A	White Joint Compound	Room 1A18A Wall	None Detected
ET-20B	White Joint Compound	Room 1A18A Wall	None Detected
ET-20C	White Joint Compound	Room 1C3 Wall	None Detected
ET-21A	Gray Cove Mastic	Room 1A18A Cove Base	None Detected
ET-21B	Gray Cove Mastic	Room 1A18A Cove Base	None Detected
ET-22A	Gray Caulking Compound	Room 1A18 Exterior Door Seam	None Detected
ET-22B	Gray Caulking Compound	Room 1A18 Exterior Door Seam	None Detected
ET-23A	Gray Spray-On Fireproofing	Ceiling Deck	None Detected
ET-23B	Gray Spray-On Fireproofing	Ceiling Deck	None Detected
ET-23C	Gray Spray-On Fireproofing	Ceiling Deck	None Detected
ET-24A	Gray Ceramic Grout	Room 1C1 Sink Wall	None Detected
ET-24B	Gray Ceramic Grout	Room 1C1 Sink Wall	None Detected
ET-25A	Brown Ceramic Mastic	Room 1C1 Sink Wall	None Detected
ET-25B	Brown Ceramic Mastic	Room 1C1 Sink Wall	None Detected
ET-26A	Black Caulking Compound	Exterior Window Seam	None Detected
ET-26B	Black Caulking Compound	Exterior Window Seam	None Detected

Appendix A Inspection Fact Sheet

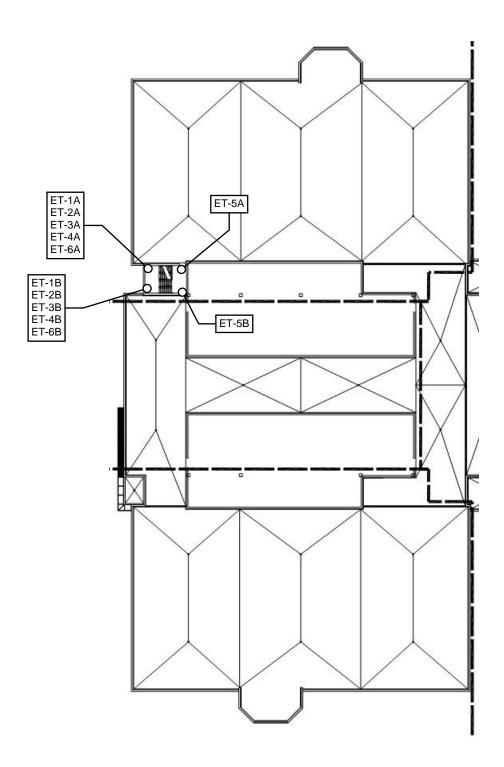
Inspection Fact Sheet

Name and Address of Building/Structure Edison Technical School 655 Colfax Street Rochester, New York 14606 Name and Address of Building/Structure Owner Rochester Schools Modernization Program 1776 North Clinton Avenue Rochester, New York 14621 Name and Address of Owner's Agent LaBella Associates, D.P.C. 300 State Street, Suite 201 Rochester, New York 14614

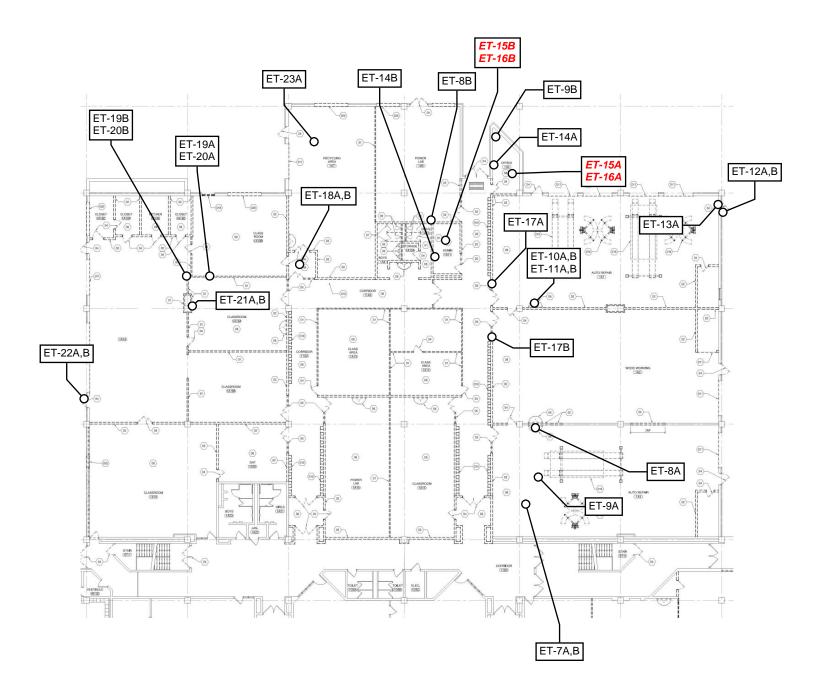
Name of the Firm & Person Conducting the Inspection

LaBella Associates, D.P.C.

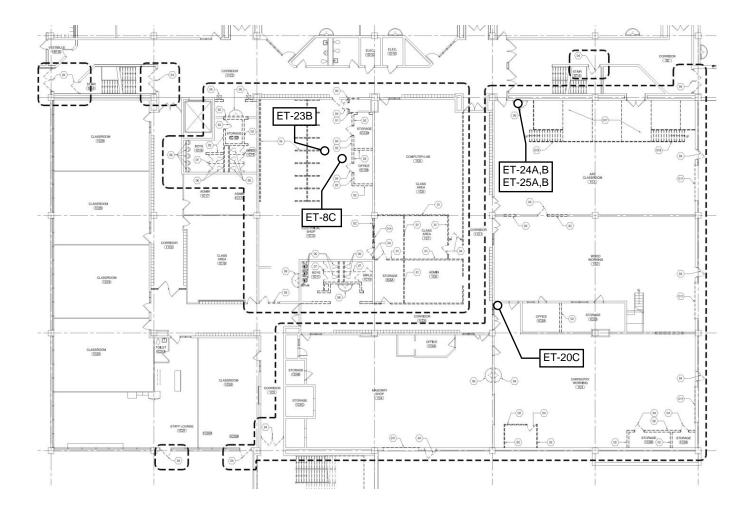
Gregory Lindsay (NYSDOL Cert. #06-08692)


Date(s) the Inspection Was Conducted

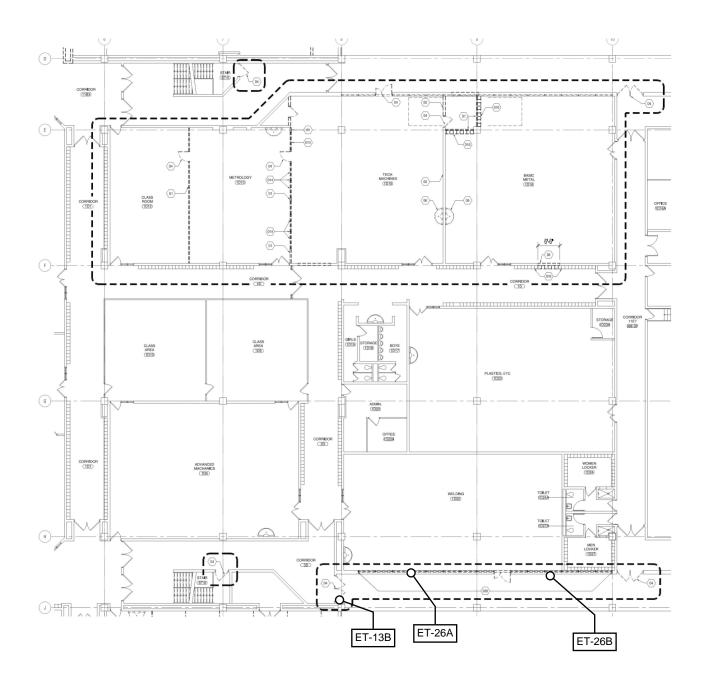
May 17th, 2017


Appendix B Sample Location Drawing

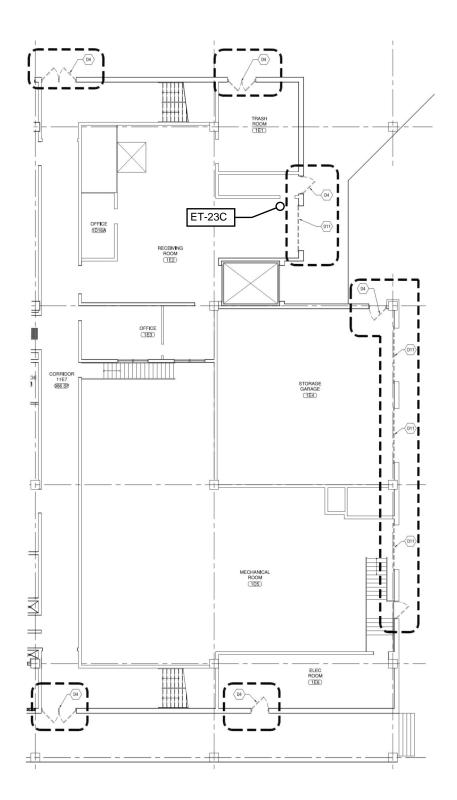
Stairwell #1 Roof



Bold Italicized Confirmed ACMs


1st Floor Area A

1st Floor Area C



1st Floor Area D

Bold Italicized Confirmed ACMs

1st Floor Area E

Bold Italicized Confirmed ACMs

Appendix C Inspection Photos

Stairwell #1 Roof

Tan Asbestos-Containing Sheet Vinyl and Associated Tan Asbestos-Containing Mastic

Orange Lead-Based Painted Lockers

Appendix D Laboratory Analytical Reports

AMA Lab TEM ELAP# 10920

ELAP # 11184

LABELLA ASSOCIATES, P. C. ANALYTICAL LABORATORY 300 STATE STREET ROCHESTER, NY 14614 (585) 454-6110 FAX(585) 454-3066

LBL JOB # 100315

PLM Methods: 198.1, 198.4, & 198.6 RSD: 14.2%

LABELLA PROJECT # 2150947

CLIENT: LaBella Associates, PC

SAMPLE TYPE: PLM Bulk

ADDRESS: 300 State Street

1003

Rochester, NY 14614

SAMPLE DATE: 10/29/2015

PROJECT LOCATION: Edison Career & Technology High School

FIELD ID	LBL ID	method	ASBESTOS TYPE	%	OTHER FIBERS	%	MATRIX	%	COLOR / DESCRIPTION
ETHS-1A	100315-1	Т	ND		CELL/GLASS	25	TAR	75	BLACK BUILT-UP ROOFING
ETHS-1B	100315-2	Т	ND		CELL/GLASS	25	TAR	75	BLACK BUILT-UP ROOFING
ETHS-2A	100315-3	Т	ND		CELL/GLASS	30	TAR	70	BLACK BUILT-UP FLASHING
ETHS-2B	100315-4	Т	ND		CELL/GLASS	30	TAR	70	BLACK BUILT-UP FLASHING
ETHS-3A	100315-5	Т	ND		CELLULOSE	20	TAR	80	BLACK TAR
ETHS-3B	100315-6	Т	ND		CELLULOSE	18	TAR	82	BLACK TAR
ETHS-4A	100315-7	Т	ND		ND		MIN/BINDER	100	GRAY CAULK
ETHS-4B	100315-8	Т	ND		ND		MIN/BINDER	100	GRAY CAULK
ETHS-5A	100315-9	Р	ND		ND		MINERAL	100	GRAY GROUT
ETHS-5B	100315-10	Р	ND		ND		MINERAL	100	GRAY GROUT
ETHS-6A	100315-11	Р	ND		ND		MINERAL	100	GRAY CEMENT
ETHS-6B	100315-12	Р	ND		ND		MINERAL	100	GRAY CEMENT
ETHS-7A	100315-13	Р	ND		FIBERGLASS	83	MINERAL	17	GRAY FIREPROOFING
ETHS-7B	100315-14	Р	ND		FIBERGLASS	83	MINERAL	17	GRAY FIREPROOFING
ETHS-7C	100315-15	Р	ND		FIBERGLASS	84	MINERAL	16	GRAY FIREPROOFING
			Lob C.		risor: Ma	H	Imi	th	Date: 11/4//.

ND - None Detected CELL-Cellulose JC - Joint Compound MIN - Mineral GLASS - Fiberglass <1 = Trace PLAS - Plaster

P - Friable PLM analytical result N - NOB PLM analytical result T - TEM analytical result IN - Inconclusive

G - Gravimetric Matrix Reduction; Sample residue weight <1% of original sample weight, TEM not required. Vermiculite: Vermiculite is reported as an asbestos-containing mineral in accordance with NYSDOH determinations. See NYSDOH guidance, available upon request.

1 "Polarized-light microscopy (PLM) is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Quantitative transmission electron microscopy (TEM) is currently the only method that can be used to determine if this material can be considered to be non-asbestos containing."

^{*} Please note: Due to interference from sample matrix components, results reported via PLM method ELAP 198.1 as negative or Trace (<1%) may be inaccurate and reported as a False Negative. It is recommended that additional analytical techniques such as gravimetric reduction, TEM and others be used to reduce obscuring effects of matrix components yielding more accurate results.

LABELLA ASSOCIATES, P. C. ANALYTICAL LABORATORY 300 STATE STREET ROCHESTER, NY 14614 (585) 454-6110 FAX(585) 454-3066

ELAP # 11184 AMA Lab TEM ELAP# 10920

37617 LBL JOB #

PLM Methods: 198.1, 198.4, & 198.6 RSD: 14.2%

LABELLA PROJECT # 2170218

SAMPLE TYPE: PLM Bulk

SAMPLE DATE: 05/11/2017

CLIENT: LaBella Associates, PC ADDRESS: 300 State Street Rochester, NY 14614

376

Edison Tech School PROJECT LOCATION:

FIELD ID	LBL ID	method	ASBESTOS TYPE	%	OTHER FIBERS	%	MATRIX	%	COLOR / DESCRIPTION
ET-1A	37617-1	Р	ND		ND		RUBBER	100	BLACK ROOFING COVE MEMBRANE
ET-1B	37617-2	Р	ND		ND		RUBBER	100	BLACK ROOFING COVE MEMBRANE
ET-2A	37617-3	Р	ND		CELLULOSE	100	ND	_	TAN FIBERBOARD
ET-2B	37617-4	Р	ND		CELLULOSE	100	ND		TAN FIBERBOARD
ET-3A	37617-5	Р	ND		FIBERGLASS	100	ND	_	YELLOW INSULATION
ET-3B	37617-6	Р	ND		FIBERGLASS	100	ND		YELLOW INSULATION
ET-4A	37617-7	G	ND		CELLULOSE	75	TAR	25	BLACK TAR PAPER
ET-4B	37617-8	G	ND		CELLULOSE	75	TAR	25	BLACK TAR PAPER
ET-5A	37617-9	Т	ND		ND		MIN/BINDER	100	GRAY CAULK
ET-5B	37617-10	т	ND		ND		MIN/BINDER	100	GRAY CAULK
ET-6A	37617-11	G	ND		FIBERGLASS	5	TAR	95	BLACK TAR
ET-6B	37617-12	G	ND		FIBERGLASS	5	TAR	95	BLACK TAR

Lab Supervisor:

Date

ND - None Detected CELL-Cellulose JC - Joint Compound MIN - Mineral GLASS - Fiberglass PLAS - Plaster <1 = TraceP - Friable PLM analytical result N - NOB PLM analytical result T - TEM analytical result IN - Inconclusive'

G - Gravimetric Matrix Reduction: Sample residue weight <1% of original sample weight, TEM not required. Vermiculite: Vermiculite is reported as an asbestos-containing mineral in accordance with NYSDOH determinations. See NYSDOH guidance, available upon request.

* Please note: Due to interference from sample matrix components, results reported via PLM method ELAP 198.1 as negative or Trace (<1%) may be inaccurate and reported as a False Negative. It is recommended that additional analytical techniques such as gravimetric reduction. TEM and others be used to reduce obscuring effects of matrix components yielding more accurate results.

1 "Polarized-light microscopy (PLM) is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Quantitative T "Polarized-light microscopy (PLM) is not consistently reliable in detecting assessos in noor covering assessore in a set of the covering assessore in the covering assessore

LABELLA ASSOCIATES, P. C. ANALYTICAL LABORATORY 300 STATE STREET ROCHESTER, NY 14614 (585) 454-6110 FAX(585) 454-3066

ELAP # 11184 AMA Lab TEM ELAP# 10920

LBL JOB # 40617

PLM Methods: 198.1, 198.4, & 198.6 RSD: 14.2%

LABELLA PROJECT #	2170218	
-------------------	---------	--

SAMPLE TYPE: PLM Bulk

SAMPLE DATE: 05/17/2017

CLIENT: LaBella Associates, PC ADDRESS: 300 State Street Rochester, NY 14614

406

PROJECT LOCATION: Edis	son Tech School

FIELD ID	LBL ID	method	ASBESTOS TYPE	%	OTHER FIBERS	%	MATRIX	%	COLOR / DESCRIPTION
ET-7A	40617-1	Т	ND		CELL/GLASS	100	ND		GRAY CEILING TILE
ET-7B	40617-2	Т	ND		CELL/GLASS	100	ND		GRAY CEILING TILE
ET-8A	40617-3	Р	ND		FIBERGLASS	25	MINERAL.	75	GRAY MUDDED FITTING
ET-8B	40617-4	Р	ND		FIBERGLASS	27	MINERAL	73	GRAY MUDDED FITTING
ET-8C	40617-5	Р	ND		FIBERGLASS	24	MINERAL	76	GRAY MUDDED FITTING
ET-9A	40617-6	Т	ND		CELL/GLASS	100	ND		GRAY CEILING TILE
ET-9B	40617-7	Т	ND		CELL/GLASS	100	ND		GRAY CEILING TILE
ET-10A	40617-8	Т	ND		ND		MIN/BINDER	100	TAN MASTIC
ET-10B	40617-9	Т	ND		ND		MIN/BINDER	100	TAN MASTIC
ET-11A	40617-10	Р	ND		ND		MINERAL	100	WHITE GROUT
ET-11B	40617-11	Р	ND		ND		MINERAL	100	WHITE GROUT
ET-12A	40617-12	Т	ND		ND		MIN/BINDER	100	BROWN CAULK
ET-12B	40617-13	Т	ND	14	ND		MIN/BINDER	100	BROWN CAULK
ET-13A	40617-14	Т	ND		ND		MIN/BINDER	100	BROWN CAULK
ET-I3B	40617-15	Т	ND		ND		MIN/BINDER	100	BROWN CAULK
ET-14A	40617-16	Т	ND		ND		MIN/BINDER	100	BROWN MASTIC
ET-14B	40617-17	Т	ND		ND		MIN/BINDER	100	BROWN MAS'FIC
ET-15A	40617-18	Ν	CHRYSOTILE	25	CELLULOSE	15	MIN/VINYL	60	TAN SHEET VINYL
ET-16A	40617-19	Ν	CHRYSOTILE	2.8	CELLULOSE	0.2	MIN/BINDER	97	TAN MASTIC
ET-17A	40617-20	G	ND		ND		MIN/BINDER	100	BLACK GLAZING COMPOUND
ET-17B	40617-21	G	ND		M	L	MIN/BINDER		BLACK GLAZING COMPOUND

Lab Supervisor: //all Imuch _____ Date: ______

ND - None Detected CELL-Cellulose JC - Joint Compound MIN - Mineral GLASS - Fiberglass <1 = Trace PLAS - Plaster P - Friable PLM analytical result N - NOB PLM analytical result T - TEM analytical result IN - Inconclusive'

G - Gravimetric Matrix Reduction: Sample residue weight <1% of original sample weight. TEM not required. Vermiculite: Vermiculite is reported as an asbestos-containing mineral in accordance with NYSDOH determinations. See NYSDOH guidance, available upon request.

* Please note: Due to interference from sample matrix components, results reported via PLM method ELAP 198.1 as negative or Trace (<1%) may be inaccurate and reported as a False Negative. It is recommended that additional analytical techniques such as gravimetric reduction. TEM and others be used to reduce obscuring effects of matrix components yielding more accurate results.

1 "Polarized-light microscopy (PLM) is not consistently reliable in detecting asbestos in floor coverings and similar non-triable organically bound materials. Quantitative transmission electron microscopy (TEM) is currently the only method that can be used to determine if this material can be considered to be non-asbestos containing."

LBL JOB # 40617

PLM Methods 198.1, 198.4, 198.6 & EPA 600/M4/82/020

		po	ACRECTOC		OTHER				EPA 600/M4/82/020
FIELD ID	LBL ID	method	ASBESTOS TYPE	%	OTHER FIBERS	%	MATRIX	%	COLOR / DESCRIPTION
ET-18A	40617-22	р	ND		FIBERGLASS	90	BINDER	10	GRAY CEILING TILE
ET-18B	40617-23	Р	ND		FIBERGLASS	90	BINDER	10	GRAY CEILING TILE
ET-19A	40617-24	Р	ND		ND		MINERAL	100	GRAY DRYWALL
ET-19B	40617-25	Р	ND		ND		MINERAL	100	GRAY DRYWALL
ET-20A	40617-26	Р	ND		ND		MINERAL	100	WHITE JOINT COMPOUND
ET-20B	40617-27	Р	ND		ND		MINERAL	100	WHITE JOINT COMPOUND
ET-20C	40617-28	Р	ND		ND		MINERAL	100	WHITE JOINT COMPOUND
ET-21A	40617-29	Т	ND		ND		MIN/BINDER	100	GRAY MASTIC
ET-21B	40617-30	Т	ND		ND		MIN/BINDER	100	GRAY MASTIC
ET-22A	40617-31	Т	ND		ND		MIN/BINDER	100	GRAY CAULK
ET-22B	40617-32	Т	ND	ļ	ND	_	MIN/BINDER	100	GRAY CAULK
ET-23A	40617-33	Р	ND		CELLULOSE	100	ND		GRAY FIREPROOFING
ET-23B	40617-34	Р	ND		FIBERGLASS	90	BINDER	10	GRAY FIREPROOFING
ET-23C	40617-35	р	ND		FIBERGLASS	90	BINDER	10	GRAY FIREPROOFING
ET-24A	40617-36	Р	ND		ND		MINERAL	100	GRAY GROUT
ET-24B	40617-37	р	ND		ND		MINERAL	100	GRAY GROUT
ET-25A	40617-38	т	ND		ND		MIN/BINDER	100	BROWN MASTIC
ET-25B	40617-39	Т	ND		ND		MIN/BINDER	100	BROWN MASTIC
ET-26A	40617-40	T	ND		ND		MIN/BINDER	100	BLACK CAULK
ET-26B	40617-41	Т	ND	-	ND		MIN/BINDER	100	BLACK CAULK

Lab Supervisor:=

ND - None Detected CELL-Cellulose JC - Joint Compound MIN - Mineral GLASS - Fiberglass <1 = Trace PLAS - Plaster P - Friable PLM analytical result N - NOB PLM analytical result T - TEM analytical result IN - Inconclusive¹

G - Gravimetric Matrix Reduction: Sample residue weight <1% of original sample weight. TEM not required. Vermiculite: Vermiculite is reported as an asbestos-containing mineral in accordance with NYSDOH determinations. See NYSDOH guidance, available upon request.

* Please note: Due to interference from sample matrix components, results reported via PLM methods EPA 600/M4/82/020 and ELAP 198.1 as negative or Trace (<1%) may be inaccurate and reported as a False Negative. It is recommended that additional analytical techniques such as gravimetric reduction. TEM and others be used to reduce obscuring effects of matrix components yielding more accurate results.

1 "Polarized-light microscopy (PLM) is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. Quantitative transmission electron microscopy (TEM) is currently the only method that can be used to determine if this material can be considered to be non-asbestos containing." Page 2 of 2

Reading No.	Location (Room)	Wall (A, B, C D) & Structure	Substrate	Color	XRF Result
1	Calibration Check				PASS
2	1A5	Wall	Block	Blue	0.0
3	1A5	Door Frame	Metal	Brown	0.0
4	1A5	Door	Metal	Tan	0.0
5	Hallway	Wall	Ceramic Tile	Gray	0.0
6	1A6	Wall	Block	Brown	0.0
7	1A6	Wall	Metal	Brown	0.0
8	1A6	Door Frame	Metal	Tan	0.0
9	1A6	Door	Metal	Dark Brown	+ 1.89
10	1A11	Wall	Block	Tan	0.0
11	1A11	Door Frame	Metal	Brown	0.0
12	1A11	Door	Metal	Tan	0.0

Reading No.	Location (Room)	Wall (A, B, C D) & Structure	Substrate	Color	XRF Result
13	Hallway	Door	Metal	Red	0.0
14	Hallway	Wall	Metal	Tan	0.0
15	Hallway	Door	Metal	White	0.0
16	1A14	Wall	Block	Gray	0.0
17	1A14	Wall	Metal	Tan	0.0
18	1A15	Wall	Metal	Gray	0.0
19	1A15	Wall	Block	White	0.0
20	1A7	Wall	Block	Tan	0.0
21	1A7	Wall	Metal	Tan	0.0
22	1A7	Sink	Ceramic	Tan/ White	0.0
23	1A7	Overhead Door	Metal	Brown	0.01
24	1A18A	Wall	Metal	Tan	0.0

Reading No.	Location (Room)	Wall (A, B, C D) & Structure	Substrate	Color	XRF Result
25	1A18A	Wall	Drywall	Tan	0.0
26	1A18A	Door Frame	Metal	Brown	0.0
27	1A18	Door	Metal	Tan	0.0
28	1A18	Wall	Drywall	Tan	0.0
29	1A18	Wall	Block	Tan	0.0
30	1A18	Door	Metal	Light Brown	0.01
31	1A18	Wall	Drywall	White	0.0
32	Hallway	Locker	Metal	Yellow	0.0
33	1A20	Wall	Metal	Blue	0.0
34	1A20	Wall	Block	Tan	0.0
35	1C12	Wall	Wood	Brown	0.0
36	1C12	Wall	Block	Tan	0.0

Reading No.	Location (Room)	Wall (A, B, C D) & Structure	Substrate	Color	XRF Result
37	1C12	Door	Metal	Tan	0.0
38	1C1	Door	Metal	Turquoise	0.0
39	1C1	Stairs	Metal	Gray	0.0
40	1C1	Door	Metal	Gray	0.0
41	Hallway	Wall	Block	White	0.0
42	1C2	Wall	Wood	Tan	0.0
43	1C2	Wall	Block	Tan	0.0
44	1C4	Wall	Block	Tan	0.0
45	Hallway	Door	Metal	Red	+ 1.09
46	Hallway	Door	Metal	Red	0.65
47	Hallway	Door	Metal	Red	0.68
48	Hallway	Door	Metal	Black	0.0

Reading No.	Location (Room)	Wall (A, B, C D) & Structure	Substrate	Color	XRF Result
49	Hallway	Door	Metal	Red	0.61
50	Hallway	Locker	Metal	Orange	+ 1.20
51	Hallway	Locker	Metal	Red	0.82
52	Calibration Check				Pass

SLG	Analysis Rep	port	Schneider 2512 W. Cary S 804-353-6778 •	treet • Richmo	nd, Virginia	•	
Customer:	Labella Associates	(1126)		Order #:	21	3279	
Address:	300 State Street Rochester, NY 146	14-1098		Matrix Received	Bul 05/	k 12/17	1
Attn:				Reported	05/	15/17	
Project: Location:	Rochester Joint Sch Edison Technical Sch						
Number:	2170218			PO Number:			
Sample ID	Cust. Sample ID	Location					
Parameter		Method	Result	RL*	Units	Analysis Date	Analyst
213279-001	ET-5	-1-					
Aroclor - 101	ti le Organic Compour 6	SW846 8082A	<463	463	µg/Kg	05/12/17	TLS
Aroclor - 122	-	SW846 8082A	<463	463	µg/Kg	05/12/17	TLS
Aroclor - 123		SW846 8082A	<463	463	µg/Kg	05/12/17	TLS
Aroclor - 124	2	SW846 8082A	<463	463	µg/Kg	05/12/17	TLS
Aroclor - 124	8	SW846 8082A	<463	463	µg/Kg	05/12/17	TLS
Aroclor - 125	4	SW846 8082A	<463	463	µg/Kg	05/12/17	TLS
Aroclor - 126	60	SW846 8082A	<463	463	μg/Kg	05/12/17	TLS
Aroclor - 126	2	SW846 8082A	<463	463	µg/Kg	05/12/17	TLS
Aroclor - 126	8	SW846 8082A	<463	463	μg/Kg	05/12/17	TLS
PCB - Su DCB	rrogate Recoveries	150%					
TCMX		125%					
						_	

213279-05/15/17 11:23 AM

2 S
Reviewed By: Thoria Nadiem
Analyst

All internal QC parameters were met. Unusual sample conditions, if any, are described. Surrogate Spike results designated with "D" indicate that the analyte was diluted out. "MI" indicates matrix interference. Concentration and *Reporting Limit (RL) based on areas provided by client. Values are reported to three significant figures. Solid PPM = mg/kg | PPB = μ g/kg and Water PPM = mg/L | PPB = μ g/L. The test results reported relate only to the samples submitted.

SLG	Analysis Rep	port	Schneider 2512 W. Cary S 804-353-6778 •	street • Richmo	nd, Virgini		
Customer: Address:	Labella Associates 300 State Street	(1126)		Order #:	2	13279	
	Rochester, NY 146	14-1098		Matrix	Bu	lk	
				Received	05/	12/17	
Attn:				Reported	05/	15/17	
Project:	Rochester Joint Sch	nools Const.					
Location:	Edison Technical So	chool					
Number:	2170218			PO Number:			
Sample ID	Cust. Sample ID	Location					
Parameter		Method	Result	RL*	Units	Analysis Date	Analyst

State Certifications

VELAP 9017

Virginia

Method	Parameter	New York	Virginia
SW846 8082A	Aroclor - 1016	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1221	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1232	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1242	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1248	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1254	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1260	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1262	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1268	ELAP Certified	VELAP Certified
State	Certificate Num	ber	
New York	ELAP 56000		

All internal QC parameters were met. Unusual sample conditions, if any, are described. Surrogate Spike results designated with "D" indicate that the analyte was diluted out. "MI" indicates matrix interference. Concentration and *Reporting Limit (RL) based on areas provided by client. Values are reported to three significant figures. Solid PPM = mg/kg | PPB = μ g/kg and Water PPM = mg/L | PPB = μ g/L. The test results reported relate only to the samples submitted.

SLG	Analysis Repo	ort		reet • Richmor	nd, Virgir	S Global, hia • 23220-5117 • Fax 804-359-1475	
Customer:	Labella Associates (1 300 State Street	126)		Order #:	2	214428	
Address: Attn:	Rochester, NY 14614	4-1098		Matrix Received Reported	0	Bulk 5/22/17 5/24/17	I
Project: Location: Number:	Edison Tech School Rochester, NY 2170218			PO Number:			
Sample ID Parameter	Cust. Sample ID	Location Method	Result	RL*	Units	Analysis Date	Analyst
214428-001	ET-12						
Semi-volati Aroclor - 1016	ile Organic Compound	s SW846 8082A	<2410	2410	µg/Kg	05/24/17	AE
Aroclor - 122		SW846 8082A	<2410	2410	µg/Kg	05/24/17	AE
Aroclor - 1232		SW846 8082A	<2410	2410	µg/Kg	05/24/17	AE
Aroclor - 1242	2	SW846 8082A	<2410	2410	µg/Kg	05/24/17	AE
Aroclor - 1248	3	SW846 8082A	<2410	2410	μg/Kg	05/24/17	AE
Aroclor - 1254	4	SW846 8082A	<2410	2410	µg/Kg	05/24/17	AE
Aroclor - 1260	0	SW846 8082A	<2410	2410	µg/Kg	05/24/17	AE
Aroclor - 1262	2	SW846 8082A	<2410	2410	µg/Kg	05/24/17	AE
Aroclor - 1268	3	SW846 8082A	<2410	2410	µg/Kg	05/24/17	AE
PCB - Sur DCB	rogate Recoveries	D					
TCMX		D					
214428-002	ET-13						
Semi-volati Aroclor - 1016	ile Organic Compound	SW846 8082A	<242000	242000	µg/Kg	05/24/17	AE
Aroclor - 122		SW846 8082A	<242000		µg/Kg	05/24/17	AE
Aroclor - 1232		SW846 8082A	<242000		µg/Kg	05/24/17	AE
Aroclor - 1242		SW846 8082A	<242000		µg/Kg	05/24/17	AE
Aroclor - 1248		SW846 8082A	<242000		µg/Kg	05/24/17	AE
Aroclor - 1254	4	SW846 8082A	<242000	242000	µg/Kg	05/24/17	AE
Aroclor - 1260	D	SW846 8082A	<242000	242000	µg/Kg	05/24/17	AE
Aroclor - 1262	2	SW846 8082A	<242000	242000	µg/Kg	05/24/17	AE
Aroclor - 1268	3	SW846 8082A	<242000	242000	µg/Kg	05/24/17	AE
PCB - Sur DCB	rogate Recoveries	D					
TCMX		D					

All internal QC parameters were met. Unusual sample conditions, if any, are described. Surrogate Spike results designated with "D" indicate that the analyte was diluted out. "MI" indicates matrix interference. Concentration and *Reporting Limit (RL) based on areas provided by client. Values are reported to three significant figures. Solid PPM = mg/kg | PPB = μ g/kg and Water PPM = mg/L | PPB = μ g/L. The test results reported relate only to the samples submitted.

SLG	Analysis Report	t		treet • Richmo	nd, Virg	es Global, jinia • 23220-5117) • Fax 804-359-1475	
Customer: Address:	Labella Associates (112 300 State Street	26)		Order #:		214428	
Attn:	Rochester, NY 14614-1	1098		Matrix Received Reported		Bulk 05/22/17 05/24/17	1
Project:	Edison Tech School			Reported		03/24/11	
Location:	Rochester, NY						
Number:	2170218			PO Number:			
Sample ID Parameter	Cust. Sample ID	Location Method	Result	RL*	Units	Analysis Date	Analyst
214428-003	ET-17						
Semi-volat	ile Organic Compounds						
Aroclor - 101	-	SW846 8082A	<442	442	µg/Kg	05/24/17	AE
Aroclor - 122	1	SW846 8082A	<442	442	µg/Kg	05/24/17	AE
Aroclor - 123	2	SW846 8082A	<442	442	µg/Kg	05/24/17	AE
Aroclor - 124	2	SW846 8082A	<442	442	µg/Kg	05/24/17	AE
Aroclor - 124	8	SW846 8082A	<442	442	µg/Kg	05/24/17	AE
Aroclor - 125	4	SW846 8082A	<442	442	µg/Kg	05/24/17	AE
Aroclor - 126	0	SW846 8082A	<442	442	µg/Kg	05/24/17	AE
Aroclor - 126	2	SW846 8082A	<442	442	µg/Kg	05/24/17	AE
Aroclor - 126	8	SW846 8082A	<442	442	µg/Kg	05/24/17	AE
PCB - Su DCB	rrogate Recoveries	MI					
TCMX		63%					
214428-004	ET-22						
	ile Organic Compounds						
Aroclor - 101	-	SW846 8082A	<193000		µg/Kg	05/24/17	AE
Aroclor - 122		SW846 8082A	<193000		µg/Kg	05/24/17	AE
Aroclor - 123		SW846 8082A	<193000		µg/Kg		AE
Aroclor - 124		SW846 8082A	<193000		µg/Kg		AE
Aroclor - 124		SW846 8082A	<193000		µg/Kg		AE
Aroclor - 125	4	SW846 8082A	<193000		µg/Kg	05/24/17	AE
Aroclor - 126	0	SW846 8082A	<193000	193000	µg/Kg	05/24/17	AE
Aroclor - 126	2	SW846 8082A	<193000) 193000	µg/Kg	05/24/17	AE
Aroclor - 126		SW846 8082A	<193000) 193000	µg/Kg	05/24/17	AE
PCB - Su DCB	rrogate Recoveries	D					
TCMX		D					

All internal QC parameters were met. Unusual sample conditions, if any, are described. Surrogate Spike results designated with "D" indicate that the analyte was diluted out. "MI" indicates matrix interference. Concentration and *Reporting Limit (RL) based on areas provided by client. Values are reported to three significant figures. Solid PPM = mg/kg | PPB = μ g/kg and Water PPM = mg/L | PPB = μ g/L. The test results reported relate only to the samples submitted.

SLG	Analysis Repor	t	Schneider 2512 W. Cary Si 804-353-6778 •	treet • Richmo	nd, Virgin				
Customer:	Labella Associates (112 300 State Street	26)		Order #:	2	214428			
Address: Attn:	Rochester, NY 14614-	1098		Matrix Received Reported	05	Bulk 05/22/17 05/24/17			
Project: Location: Number:	Edison Tech School Rochester, NY 2170218			PO Number:					
Sample ID Parameter	Cust. Sample ID	Location Method	Result	RL*	Units	Analysis Date	Analyst		
214428-005	ET-26	Wethod	Result	KL	Units	Analysis Date	Analyst		
	ile Organic Compounds								
Aroclor - 1016		SW846 8082A	<231000	230000	µg/Kg	05/24/17	AE		
Aroclor - 122	1	SW846 8082A	<231000	230000	µg/Kg	05/24/17	AE		
Aroclor - 1232	2	SW846 8082A	<231000	230000	µg/Kg	05/24/17	AE		
Aroclor - 1242	2	SW846 8082A	<231000	230000	µg/Kg	05/24/17	AE		
Aroclor - 1248	3	SW846 8082A	<231000	230000	µg/Kg	05/24/17	AE		
Aroclor - 1254	4	SW846 8082A	<231000	230000	µg/Kg	05/24/17	AE		
Aroclor - 1260	0	SW846 8082A	<231000	230000	µg/Kg	05/24/17	AE		
Aroclor - 1262	2	SW846 8082A	<231000	230000	µg/Kg	05/24/17	AE		

<231000

Afociof - 1262	SW846 8082A
Aroclor - 1268	SW846 8082A
PCB - Surrogate Recoveries	
DCB	D
TCMX	D

214428-05/24/17 01:50 PM

Searborg

05/24/17

AE

Reviewed By: Tracy Scarberry Organics Manager

µg/Kg

230000

All internal QC parameters were met. Unusual sample conditions, if any, are described. Surrogate Spike results designated with "D" indicate that the analyte was diluted out. "MI" indicates matrix interference. Concentration and *Reporting Limit (RL) based on areas provided by client. Values are reported to three significant figures. Solid PPM = mg/kg | PPB = μ g/kg and Water PPM = mg/L | PPB = μ g/L. The test results reported relate only to the samples submitted.

SLG	Analysis Re	port	Schneider 2512 W. Cary S 804-353-6778 •	treet • Richmo	nd, Virgini	,		
Customer: Address:	Labella Associates 300 State Street	(1126)		Order #:	2	14428		
	Rochester, NY 146	514-1098		Matrix	Bu	lk	1	
				Received	05/	/22/17		
Attn:				Reported		05/24/17		
Project:	Edison Tech Schoo	bl						
Location:	Rochester, NY							
Number:	2170218			PO Number:				
Sample ID	Cust. Sample ID	Location						
Parameter		Method	Result	RL*	Units	Analysis Date	Analyst	

State Certifications

Method	Parameter	New York	Virginia
SW846 8082A	Aroclor - 1016	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1221	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1232	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1242	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1248	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1254	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1260	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1262	ELAP Certified	VELAP Certified
SW846 8082A	Aroclor - 1268	ELAP Certified	VELAP Certified
State	Certificate Numb	ber	
New York	ELAP 56000		
Virginia	VELAP 9017		

All internal QC parameters were met. Unusual sample conditions, if any, are described. Surrogate Spike results designated with "D" indicate that the analyte was diluted out. "MI" indicates matrix interference. Concentration and *Reporting Limit (RL) based on areas provided by client. Values are reported to three significant figures. Solid PPM = mg/kg | PPB = μ g/kg and Water PPM = mg/L | PPB = μ g/L. The test results reported relate only to the samples submitted.

Appendix E Licenses and Certifications

New York State - Department of Labor

Division of Safety and Health License and Certificate Unit State Campus, Building 12 Albany, NY 12240

ASBESTOS HANDLING LICENSE

La Bella Associates PC Suite 201 300 State Street

Rochester, NY 14614

FILE NUMBER: 99-1172 LICENSE NUMBER: 29278 LICENSE CLASS: RESTRICTED DATE OF ISSUE: 01/31/2017 EXPIRATION DATE: 01/31/2018

Duly Authorized Representative – Robert Pepe:

This license has been issued in accordance with applicable provisions of Article 30 of the Labor Law of New York State and of the New York State Codes, Rules and Regulations (12 NYCRR Part 56). It is subject to suspension or revocation for a (1) serious violation of state, federal or local laws with regard to the conduct of an asbestos project, or (2) demonstrated lack of responsibility in the conduct of any job involving asbestos or asbestos material.

This license is valid only for the contractor named above and this license or a photocopy must be prominently displayed at the asbestos project worksite. This license verifies that all persons employed by the licensee on an asbestos project in New York State have been issued an Asbestos Certificate, appropriate for the type of work they perform, by the New York State Department of Labor.

SH 432 (8/12)

Eileen M. Franko, Director For the Commissioner of Labor

NEW YORK STATE DEPARTMENT OF HEALTH WADSWORTH CENTER

Expires 12:01 AM April 01, 2018 Issued April 01, 2017

NY Lab Id No: 11184

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE Issued in accordance with and pursuant to section 502 Public Health Law of New York State

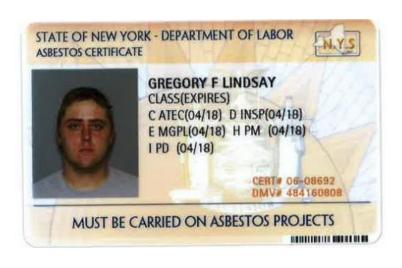
MR. MATTHEW SMITH LABELLA ASSOCIATES 300 STATE STREET SUITE 200 ROCHESTER, NY 14614

> is hereby APPROVED as an Environmental Laboratory for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved subcategories and/or analytes are listed below:

Miscellaneous

Asbestos in Friable Material Asbestos in Non-Friable Material-PLM Item 198.1 of Manual Item 198.6 of Manual (NOB by PLM)

Serial No.: 55912


Property of the New York State Department of Health. Certificates are valid only at the address shown, must be conspicuously posted, and are printed on secure paper. Continued accreditation depends on successful ongoing participation in the Program. Consumers are urged to call (518) 485-5570 to verify the laboratory's accreditation status.

Engineering Architecture Environmental Planning

300 State Street, Suite 201 | Rochester, NY 14614 | p 585.454.6110 | f 585.454.3066 | www.labellapc.com

SECTION 00 31 32 – Geotechnical Information

PART 1 – GENERAL

- 1.1 SUMMARY
 - A. The attached Geotechnical report is provided for contractor reference.
- PART 2 PRODUCTS (Not Applicable)
- PART 3 EXECUTION (Not Applicable)

6035 Corporate Drive East Syracuse, New York 13057 (315) 701-0522 (315) 701-0526 (Fax)

www.cmeassociates.com

Transmittal

June 5, 2019

LaBella Associates, DPC 300 State Street Rochester, New York 14614

Attn: Mr. Michael Ferreri, Project Designer

Re: Edison Technical School North Parking Lot Reconstruction Project Rochester, New York CME Project No.: 27498-05

Gentlepeople:

Enclosed you will find

Number of Copies 3

<u>Report Number</u> 27498B-02-0619

Description Asphalt Pavement Report

This report was emailed to Mr. Michael Ferreri at mferreri@labellapc.com on 06/05/19.

Respectfully submitted, CME Associates, Inc.

Gary M. Gantney, P.E. Project Engineer

GMG.cw

A New York State Certified Woman-Owned Business Enterprise (WBE)

6035 Corporate Drive East Syracuse, New York 13057 (315) 701-0522 (315) 701-0526 (Fax)

www.cmeassociates.com

June 5, 2019

LaBella Associates, DPC 300 State Street Rochester, New York 14614

Attn: Mr. Michael Ferreri, Project Manager

Re: Asphalt Pavement Report Edison Technical School North Parking Lot Reconstruction Project Rochester, New York CME Report No.: 27498B-02-0619 Page 1 of 3

1.0 INTRODUCTION

CME Associates, Inc. (CME) conducted a limited subsurface exploration at the subject project site and issued the attached Subsurface Exploration Report, labeled CME Report Number: 27498B-01-0519 (Report B-01). A summary of subsurface conditions, findings of asphalt pavement coring, and all exploration logs are included in the above referenced report.

This report provides a site characterization and asphalt pavement thickness design recommendations. The above referenced report and this report completes CME's Scope of Services for this project, as contracted in CME Proposal/Agreement Number: 05.5739R(1), executed by LaBella Associates, DPC (Client).

2.0 SITE CHARACTERIZATION AND ENGINEERING SIGNIFICANCE

The subject project site is located within the former Emerson Street Landfill, which was operated by the City of Rochester from about the early 1940's to 1971. As reported in a report¹ by LaBella Associates, DPC, the Landfill at the subject project site consists of up to about 23 feet of Fill Material consisting of putrescible waste (wood, paper, miscellaneous refuse), metal, plastic, brick, glass and ash. Peat and Silt soils consistent with soils to be expected in a marsh/swamp were reported to be present below the Landfill in areas of this site. The Landfill Material and the underlying Peat is subject to volume loss over time, due to creep and decay of organic and putrescible material.

Please note, a pavement structure constructed to bear over the existing Landfill Material will undergo long-term settlement. Also, the settlement will likely be uneven due to the random nature of the Landfill Material and its variable thickness.

¹ Guidance for Waste-fill Management During Former Emerson Street Landfill, labeled LaBella Project No. 210173.

CME Report No.: 27498B-02-0619 Page 2 of 3

3.0 ASPHALT PAVEMENT DESIGN RECOMMENDATIONS

The existing asphalt pavement in the area shown on the attached as "Proposed Pavement Reconstruction Limits", is planned to be replaced with a new one, consisting of a heavy-duty pavement section. Finish grade is planned to approximately match existing. Per attached email from Michael Ferreri, dated May 23, 2019, CME was directed to use the traffic count information given in the attached LaBella Email, dated 05/11/17.

Pavement constructed over the existing Landfill Material and Peat will experience long-term settlement which will be uneven across the site, regardless of how thick the pavement cross-section is and how well the subbase course is reinforced. To eliminate this risk, subgrade replacement with Engineered Structural Fill would be required, which is not an option at this site. Therefore, it makes sense to design a pavement section that will hold up as best as feasible, with the understanding that whatever pavement section is built above the Landfill and Peat will settle over time. The above concerns were discussed with the design team, and CME recommended that the pavement design be delegated to a company that produces geogrids, so that a pavement section with geogrid reinforced subgrade and subbase could be designed for this project. The design team concurred with this recommendation.

CME worked with Tensar International Corporation (TIC) to have them perform a Delegated Pavement Section Design for this project. TIC utilized the subsurface information presented in CME Report B-01 and traffic count information given in the attached LaBella Email and designed a pavement section, given in their Roadway Design Report, attached. This pavement section along with all quality control testing and inspection requirements by TIC shall be incorporated into the Contract Documents. No substitution of materials shall be allowed, since the design responsibility lies with TIC.

A Roadway Design Report signed and sealed by TIC is attached to this report. Please refer to said report for design details, pavement section specifications, quality control requirements, pavement maintenance requirements and limitations statements.

Additionally, please forward the Contract Documents that pertain to this work, for CME to review and comment, prior to bid issuance.

4.0 CLOSING

CME has endeavored to conduct the services identified herein in a manner consistent with that level of care and skill ordinarily exercised by members of the geotechnical engineering profession currently practicing in the same locality and under similar conditions as this project. No warranty, either express or implied, is made or intended by CME's proposal, contract, and written and oral reports, all of which warranties are hereby expressly disclaimed. CME shall not be responsible for the acts or omissions of Client, its contractors, agents and consultants. CME has relied upon information supplied by Client, its contractors, agents and consultants, or information available from generally accepted reputable sources, without independent verification, and CME assumes no responsibility for the accuracy thereof.

No other representations, expressed or implied, are intended or made with respect to the information provided herein, and including but not limited to, its suitability for use by others.

In accordance with CME's Terms and Conditions for Geotechnical Services, CME will dispose of all unconsumed samples thirty (30) days after submission of this report. All consumed samples were disposed of immediately after test completion. If you would like to keep the unconsumed samples, please email a request to do so, within five (5) business days from the date of this report to Cristina White at <u>cwhite@cmeassociates.com</u>.

CME Report No.: 27498B-02-0619 Page 3 of 3

Please do not hesitate to contact our office if you have any questions regarding this report, its conclusions, its recommendations, or its application to actual field conditions revealed during construction.

Respectfully Submitted, CME Associates, Inc.

mul

Gary M. Gantney, P.E. Supervisor of Special Inspections

Reviewed By, CME Associates, Inc.

Anas N. Anasthas, P.E. Geotechnical Engineer

GG.cw

Attachments: CME Report Number: 27498B-01-0519 (21 of 21) Proposed Pavement Reconstruction Limits (1 of 1) LaBella Email, dated 05/23/19 (1 of 1) LaBella Email, dated 5/11/17 (2 of 2) Roadway Design Report by TIC (8 of 8) Laboratory Test Summary Report (3 of 3)

6035 Corporate Drive East Syracuse, New York 13057 (315) 701-0522 (315) 701-0526 (Fax)

www.cmeassociates.com

Transmittal

May 17, 2019

LaBella Associates, DPC 300 State Street Rochester, New York 14614

Attn: Mr. Michael Ferreri, Project Designer

Re: Edison Technical School North Parking Lot Reconstruction Project Rochester, New York CME Project No.: 27498-05

Gentlepeople:

Enclosed you will find

Number of Copies 3

Report Number 27498B-01-0519 <u>Description</u> Subsurface Exploration Report

This report was emailed to Mr. Michael Ferreri at mferreri@labellapc.com on 05/17/19.

Respectfully submitted, CME Associates, Inc.

an

Gary M. Gantney, P.E. Project Engineer

GMG.cw

Subsurface Exploration Report

Edison Technical School North Parking Lot Reconstruction Project Rochester, New York

Prepared For: (Client)	LaBella Associates, DPC Attn: Mr. Michael Ferreri, Project Designer 300 State Street Rochester, New York 14614
	Direct: 585-770-2513
	Office: 585-454-6110
	Email: <u>mferreri@labellapc.com</u>
Prepared By:	CME Associates, Inc.
	Attn: Gary M. Gantney, P.E., Project Engineer
	6035 Corporate Drive
	East Syracuse, New York 13057
	Office: 315-701-0522
	Fax: 315-701-0526
	Email: ggantney@cmeassociates.com

CME Report No.: 27498B-01-0519 May 17, 2019

Table of Contents

Page

i TITLE SHEET ii TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
2.0	EXPLORATION METHODOLOGY	. 1
3.0	SUBSURFACE CONDITIONS	. 2
3.1	Surface Conditions and Subsurface Profile	. 2
3.2	Groundwater Observations	. 2
4.0	CLOSING COMMENTS	. 3

Attachment Listing:

CME Exploration Location Plan, ELP-1 (1 of 1) GPS Coordinates and Elevations Table (1 of 1) Pavement Core Summary (1 of 1) Pavement Core Photographs (3 of 3) CME Subsurface Exploration – Test Boring Logs, B-101 through B-105 (5 0F 5) *General Information & Key to Test Boring Logs* (4 of 4)

Edison Technical School North Parking Lot Reconstruction Project Rochester, New York

1.0 INTRODUCTION

CME Associates, Inc. (CME) conducted a subsurface exploration consisting of Pavement Coring, Test Borings and prepared this report. CME's Scope of Work and this report have been provided pursuant to the written authorization of CME Proposal/Agreement No.: 05.5739R(1) by LaBella, DPC (Client). This report provides a summary of the subsurface conditions identified in the explorations conducted at the subject project site. All exploration logs, an Exploration Location Plan, GPS Coordinates and Elevations for Exploration Locations, Pavement Core Summary Table and Pavement Core Photographs, are attached to this report, among other attachments. Laboratory index testing on selected soil samples is in progress, and the test results will be presented under a separate cover.

2.0 EXPLORATION METHODOLOGY

The exploration locations (B-101 through B-105) were selected and staked in the field by CME. Please refer to the attached Exploration Location Plan, labeled ELP-1, for approximate location of the explorations. GPS coordinates and elevations for all explorations were obtained by CME, and are attached to this report.

2.1 Test Borings and Pavement Cores

A total of 5 Test Borings/Pavement Cores, labeled B-101 through B-105, were advanced. The asphalt pavement cores were first extracted at each exploration location using a portable core drill equipped with a 6" nominal diameter core barrel with water used as a lubricant. Subsequently, the Test Borings were advanced through the same hole using a Central Mine Equipment Model 45c, Truck-mounted, rotary exploration drill rig, equipped with 3-1/4" I.D. hollow stem augers. Soil Sampling was conducted using a 140-pound auto hammer dropping through a distance of 30 inches to drive a 2" O.D. split barrel sampler, in general conformance with ASTM Standard Practice D1586. Each borehole was backfilled with auger cuttings and topped with asphalt cold patch to nearly match existing grade.

The samples were logged and visually classified in the field by the CME Drillers, and a portion of each soil sample was placed and sealed in a glass jar. The core samples were bagged in a Ziploc bag. The soil classifications and core descriptions were later reviewed by CME Geologist Mr. Mark Schumacher, P.G. The visual soil classifications were made using the modified Burmister Classification System, as described in the attached document entitled, "General Information & Key to Test Boring Logs."

3.0 SUBSURFACE CONDITIONS

This section summarizes the subsurface conditions identified in the explorations conducted at the site. The subsurface conditions presented herein have been generalized for simplicity and brevity by the undersigned CME Engineer from the actual data obtained from the Subsurface Exploration conducted at the subject project site. It is possible for the subsurface conditions between the sampling intervals and the exploration locations to vary from that inferred and/or given in this section. Please, refer to the attached CME Test Boring Logs and Pavement Core Summary Report for actual conditions encountered at the time, location and elevation of each sampling.

3.1 Surface Conditions and Subsurface Profile

CME's explorations were advanced through existing asphalt pavements across the site. Please refer to the attached Exploration Location Plan, labeled ELP-1, for existing site features.

The Borings penetrated Asphalt Pavement, overlying Subbase Material, overlying Miscellaneous Fill.

Asphalt Pavement and Subbase Course Material: Please refer to the attached Pavement Core Summary Table and Pavement Core Photographs for details of existing pavement sections identified in the explorations.

Miscellaneous Fill: Miscellaneous Fill was penetrated in the Test Borings to boring termination depth (6 feet). The Miscellaneous Fill comprised of soil (silt, clay, sand, gravel), mixed with miscellaneous refuse material (leather, plastic, acetate, glass, concrete, wood, ash, thread, brick, porcelain, etc.). These materials are believed to have been dumped at the site between about 1940 and 1971, when the site was used as a Municipal Landfill as reported in a report, titled "Guidance for Waste-fill Management During Site Development on the Former Emerson Street Landfill", labeled LaBella Project No. 210173, dated October 2013. According to this report, the Fill depth at/near this site could be up to 23 feet below existing grade.

3.2 Groundwater Observations

Groundwater level observations and measurements were made by the CME Crew when groundwater accumulates in the boreholes. The CME Drillers noted water levels inside the boreholes during advancement and following casing removal. If the hole caves-in after casing removal, the depth of cave-in is noted on the CME Boring logs. The drillers also note whether samples retrieved are dry, moist, wet or saturated. The conditions and times of groundwater level observations are noted on the individual Test Boring Logs.

Groundwater was not observed within the exploration depths, during the short exploration period. Groundwater fluctuations should be expected to occur at this site depending on several factors, such as rainfall, seasonal changes, prevailing climate, ambient weather conditions and adjacent construction operation, among other factors.

CME Report No. 27498B-01-0519 Page 3 of 3

4.0 CLOSING COMMENTS

CME has endeavored to conduct the services identified herein in a manner consistent with that level of care and skill ordinarily exercised by members of the geotechnical engineering profession currently practicing in the same locality and under similar conditions as this project. No warranty, either express or implied, is made or intended by CME's proposal, contract, and written and oral reports, all of which warranties are hereby expressly disclaimed. CME shall not be responsible for the acts or omissions of Client, its contractors, agents and consultants. CME has relied upon information supplied by Client, its contractors, agents and consultants, or information available from generally accepted reputable sources, without independent verification, and CME assumes no responsibility for the accuracy thereof.

No other representations, expressed or implied, are intended or made with respect to the information provided herein, and including but not limited to, its suitability for use by others.

Please do not hesitate to contact our office if you have any questions regarding this report, its conclusions, or its application to actual field conditions revealed during construction.

Respectfully Submitted, CME Associates, Inc.

hathe

Gary M. Gantney, P.E. Project Engineer

Reviewed By, CME Associates, Inc.

Anas N. Anasthas, P.E. Geotechnical Engineer

ATTACHMENT TO CME REPORT NO.: 27498B-01-0519

GPS Coordinates and Elevations Edison Tech North Parking Lot Pavement Reconstruction Project Rochester, New York

Boring ID	Latitude	Longitude	Elevation (FT. AMSL)
B-101	43.17788431	-77.67199576	531.3
B-102	43.17814600	-77.67165000	530.3
B-103	43.17818003	-77.67020003	529.8
B-104	43.17784883	-77.67066469	526.7
B-105	43.17716327	-77.67203850	531.3
BM-1	43.17823451	-77.67196900	530.1
BM-2	43.17790829	-77.67048241	528.8

Notes:

AMSL: Above Mean Sea Level

GPS coordinates were obtained utilizing a Spectra Precision Ranger 3. NYSDOT CORS positions are based on NAD 83 (2011).

Elevation at grade determined using standard survey equipment and referencing an onsite benchmark designated as BM-1: the top of a storm sewer manhole located in the roadway to the north of the northwest parking area (listed elevation of 530.05 feet).

An additional reference point elevation was determined at the following location: BM-2: the top of a storm sewer grate located southern portion of the northeast parking area.

Attachment to CME Report Number: Pavement Core Summary

274988-01-0519

Edison Tech North Parking Lot Pavement Reconstruction Project Rochester, New York Project Name:

Page 1

Prepared By: Nicholas A. Smith, P.G. Date: 5/8/2019

Asphalt Core ID	Total Asphalt Thickness	Thickness of Top	Thickness of Binder	S	Subbase Course Material	Geotextile Fabric Present Below		
	(in.)	Course (in.)	Course (in.)	Course (in.) Course (in.) Thickness (in.)(2)	Visual Soil Classification (3)	Subbase?	Visual Subgrade Soil Classification (3)	Notes
B-101	5	2 1/4	2 3/4	12	Run of Crush; Grey/Brown cmf gravel, some cmf sand, trace silt	No	See Boring Log B-101	
B-102	5 3/8	2 1/4	3 1/8	12	Run of Crush; Grey/Brown cmf gravel, some cmf sand, trace silt	Νο	See Boring Log B-102	
B-103	4	2 1/4	1 3/4	12	Run of Crush; Grey cmf gravel, some cmf sand, trace silt	Νο	See Boring Log B-103	Binder course weathered and broken
B-104	2	1	1	12	Run of Crush; Grey/Brown cmf gravel, some cmf sand, litle silt	No	See Boring Log B-104	
B-105	5 1/2	1 1/4	4 1/4	12	Grey cmf gravel, little silt, little cmf sand	No	See Boring Log B-105	Lower 1 3/4" of binder course slightly weathered

Remarks: 1) See attached Pavement Core Photographs

2) Approximate thickness estimated using sample recovery in split-spoon and/or change of material depth. Actual thickness may vary.

3) See "General Information & Key to Test Boring Log" for methods used in visual classification.

Photograph 1: Boring B-101 Asphalt Core

Photograph 2: Boring B-102 Asphalt Core

Attachment to CME Report Number: 27498B-01-0519 Pavement Core Photographs

Photograph 3: Boring B-103 Asphalt Core

Photograph 5: Boring B-104 Asphalt Core

Photograph 6: Boring B-105 Asphalt Core

	CME	Associ				BORING				Page 1 of 1	
							TION –	TE	ST BORING LO	OG	
Project: Client:	Re		ion Proje	ct, Roch	ot Pavemen ester, New			-	rt No.: 27498B-01 Started: 05/07/19		/07/19
	La n of Borii				ocation Pla	n ELP-1			ation of Surface of Boring		07/19
2000000			DDS OF I						GROUND WATER O		
Casing:		' ID H. Ste	em Auger	Driller		Fletcher	Date		Time	Depth	Casing At
Casing I Other:	Hammer: 6" Thir	: 1 Wall Cor	e Barrel	Driller Inspec		Casatelli	05/07/1	9	While drilling	0.1'*	2.0'
Soil San		2" OD Sp		Rod Si			05/07/1		Before casing removed	0.1'*	6.0'
		r: Wt.		Fall:	30 in		05/07/1		After casing removed	0.1'*	out
Make &	: Model o	f Drill Rig			45C Truck N	Iounted	05/07/1	9	After casing removed	caved @ 1.9'	out
		LOGC)F BORI		MPLES				CLASSIFICATION 0	OF MATERIAL	
Depth	Casing	Sample	Dept Sample		Sample Type/	Blows On	Depth Of			l – 35 to 50 % ne – 20 to 35 %	SPT "N"
Scale (Feet)	Blows/ Foot	I.D.	From	То	Recovery (Inches)	Sampler Per 6 inches	Change (feet)			e - 10 to 20 % ce - 0 to 10 %	or RQD
0	CORE		0.0	0.4			0.4	As	phalt		
	XXX	1A	0.5	1.5	SS/16	13-11-19		FII	LL; Subbase - Run of cri	ush – Grey/Brown c	mf 30
							1.5		avel, some cmf sand, trac		
	Η	1B	1.5	2.0					scellaneous FILL; Grey		d,
			•	4.0					gravel, leather, plastic (
	G	2	2.0	4.0	SS/8	3-5-8-6			iscellaneous FILL; Grey		i, 13
	S							cm	nf sand, acetate pieces (n	noist)	
		3	4.0	6.0	SS /10	6-5-3-3		FII	LL; Grey/Brown silt, cm	ıf sand, mf gravel	8
5	А							(m	oist)		
	XXX							Po	ottom of Boring @ 6.0'		
	ΛΛΛ							БО	atom of Bornig @ 0.0		
10											
15											
20											

	<u>CME</u>	Associ				BORING N				Page 1 of 1		
							ION –	TE	ST BORING LO	OG		
Project: Client:	Re		ion Proje	ct, Roch	ot Pavemer ester, New			-	rt No.: 27498B-01 Started: 05/07/19)5/07 /1	10
	La 1 of Borii				ocation Pla	n EL P-1			tion of Surface of Boring))/07/1	19
			DS OF I	NVESTIC	GATION				GROUND WATER O			
Casing: Casing H	3-1/4' Hammer:	' ID H. Ste	em Auger	Driller Driller		I Fletcher I Casatelli	Date		Time	Depth	Cas	ing At
Other:		n Wall Cor	e Barrel	Inspec			05/07/1	9	While drilling	*	1	2.0'
Soil San		2" OD Sp		Rod Si			05/07/1		Before casing removed	None Noted	(5.0'
-		r: Wt.		Fall:	30 in		05/07/1		After casing removed	None Noted		out
Make &	Model o	f Drill Rig	g: DF BORI		45C Truck N	lounted	05/07/1	9	After casing removed CLASSIFICATION	caved @ 5.5'	(out
			Dept		MFLES				CLASSIFICATION	JF MAIERIAL		
Depth Scale	Casing	Sample	Sample		Sample Type/	Blows On	Depth Of			l – 35 to 50 % ne – 20 to 35 %		SPT "N"
(Feet)	Blows/ Foot	I.D.	From	То	Recovery (Inches)	Sampler Per 6 inches	Change (feet)			e - 10 to 20 % ce - 0 to 10 %		or RQD
0	CORE		0.0	0.4			0.4		phalt			
	XXX	1A	0.5	1.5	SS/18	8-9-9			LL; Subbase - Run of cri	•	cmf	18
							1.5	-	vel, some cmf sand, trac			
	Н	1B	1.5	2.0					scellaneous FILL; Grey		nf	
					_			-	vel, concrete, glass (mo		_	
	S	2	2.0	4.0	SS/18	5-11-17-18			scellaneous FILL; Grey f gravel, glass (moist)	silt, clay, cmf san	ıd,	28
	5							cm	i gravei, grass (moist)			
5	А	3	4.0	6.0	SS/14	17-26-11-12			scellaneous FILL; Grey id, wood (moist)	silt, cmf gravel, c	mf	37
5	A							San	ia, wood (moist)			
	XXX							Bo	ttom of Boring @ 6.0'			
10												
15												
								1				

	CME	2 Associ				BORING				Page 1 of 1		
							TION –	TE	ST BORING LO	OG		
Project	Re	econstruct	tion Proje	ct, Roch	ot Pavemen ester, New			-	rt No.: 27498B-01			
Client:	La n of Bori	Bella As			eastion Die	n ELD 1			Started: 05/07/19 tion of Surface of Boring		05/07/	19
Locatio	II OI DOFI		DDS OF I		Location Pla	II ELP-1		lieva	GROUND WATER O			
Casing:		" ID H. Ste		Drille	: Beau	Fletcher	Date		Time	Depth	Cas	ing At
0	Hammer:	: 1 Wall Coi	D1	Drille		Casatelli		0		*		
Other: Soil Sar		n Wall Coi 2" OD Sp		Inspec Rod Si			05/07/1		While drilling Before casing removed	* None Noted		2.0' 5.0'
		2 0D 5p		Fall:	30 in		05/07/1		After casing removed	None Noted		out
		f Drill Rig	g:		45C Truck M	Iounted	05/07/1	9	After casing removed	caved @ 4.3'		out
	-	LOG)F BORI	NG SAI	MPLES				CLASSIFICATION (OF MATERIAL		-
Depth Scale	Casing Blows/	Sample	Dept Sample		Sample Type/	Blows On	Depth Of			l – 35 to 50 % ne – 20 to 35 %		SPT "N"
(Feet)	Foot	I.D.	From	То	Recovery (Inches)	Sampler Per 6 inches	Change (feet)			e - 10 to 20 % ce - 0 to 10 %		or RQD
0	CORE		0.0	0.3			0.3	As	phalt			
	XXX	1A	0.5	1.5	SS/18	14-15-14			LL; Subbase - Run of cri	<i>ush</i> – Grey cmf gr	avel,	29
							1.5		me cmf sand, trace silt (
	Н	1B	1.5	2.0					scellaneous FILL; Brow	vn silt, cmf sand, o	cmf	
			•	1.0				0	wel, wood (moist)	D	6	
	G	2	2.0	4.0	SS/15	6-6-15-21			scellaneous FILL; Grey	•	cmf	21
	S							sar	nd, fine gravel, porcelair	(moist)		
		3	4.0	6.0	SS/16	7-7-9-20		Gro	ey/Brown SILT, trace ci	nf SAND, trace c	mf	16
5	А							GR	RAVEL (moist, very stif	f)		
								Po	tential fill or reworked r	naterial		
	XXX							Bo	ttom of Boring @ 6.0'			
10												
15												
20												
20		I			1		1					

	CME	2 Associ	iates, In			BORING I					Page 1 of 1		
						KPLORAT	ION –	TES	T BORI	NG LO	OG		
Project					ot Pavemer ester, New		F	Report	No.: 27	7498B-01	-0519		
Client:			sociates,					Date Sta		5/07/19		05/07/1	19
Locatio	n of Bori		See Expl DDS OF I	oration L	ocation Pla	n ELP-1	E		on of Surface		: 526.7' BSERVATIONS		
Casing:	3-1/4'		em Auger			Fletcher							
	Hammer	:	enn i ruger	Driller		n Casatelli	Date		Time		Depth	Cas	ing At
Other:		n Wall Cor		Inspec			05/07/1		While drilling		*		2.2'
Soil Sar		2" OD Sp		Rod Si	ze: AWJ 30 in		05/07/1		Before casing		None Noted		6.2'
-		er: Wt. of Drill Rig		Fall:	30 m 45C Truck M		05/07/1		After casing re After casing re		None Noted caved @ 5.8'		out out
Trake o			<u>5</u> .)F BORI			Iounted	05/07/1				OF MATERIAL		out
			Dept			D1	Denth						CDT
Depth Scale	Casing	Sample	Sample		Sample Type/	Blows On	Depth Of		c – coarse		l – 35 to 50 % ne – 20 to 35 %		SPT "N"
(Feet)	Blows/ Foot	I.D.	From	То	Recovery	Sampler	Change	I	m – m edium		e - 10 to 20 %		or
			FIOII	10	(Inches)	Per 6 inches	(feet)		f – fine	trac	ce - 0 to 10 %		RQD
0	CORE		0.0	0.2			0.2	Asph					
	XXX	1A	0.2	1.2	SS/18	8-8-5-10				•	ush – Grey/Brow	n cmf	13
							1.5		el, some cmf				_
	Η	1B	1.2	2.2							vn silt, cmf sand,	cmf	
									el, glass (mo				
	a	2	2.2	4.2	SS/16	9-15-20-26		FILL	.; Brown silt	, cmf sand	l, mf gravel (moi	st)	35
	S												
		2	4.2	6.2	SS/16	9-16-10-10		си і	Cray/Dray			faand	26
5	А	3	4.2	0.2	35/10	9-10-10-10		(mois	•	/ii siit, cia	y, mf gravel, cm	sanu	20
3	A								st) orked materi	al			
								Newc	παιετι	ш			
	XXX							Botto	om of Boring	0 6 2'			
	11111							Dom	bin or Doring	, e 0.2			
10													
													1
													1
15													
15													1
													1
													1
													1
													1
20													1
20													1

	<u>CME</u>	2 Associ			. <u></u> ===	BORING				Page 1 of 1		
							<u>- ION –</u>	TE	ST BORING LO	DG		
Project	Re	econstruct	tion Proje	ct, Roch	ot Pavemen ester, New		ł	Repor	rt No.: 27498B-01	-0519		
Client:		Bella Ass							Started: 05/07/19		05/07/1	.9
Locatio	n of Bori				ocation Pla	n ELP-1	<u> </u>	Eleva	tion of Surface of Boring			
Casing:	3 1/4	" ID H. Ste	DDS OF I			Fletcher			GROUND WATER O	BSERVATIONS		
	Hammer		III Auger	Driller		a Casatelli	Date		Time	Depth	Casi	ing At
Other:		n Wall Cor	e Barrel	Inspec			05/07/1	9	While drilling	*	2	2.0'
Soil Sar		2" OD Sp		Rod Si			05/07/1		Before casing removed	None Noted	6	5.0'
-		er: Wt.		Fall:	30 in		05/07/1		After casing removed	None Noted	1	out
Make &	z Model o	f Drill Rig	g:)F BORI		45C Truck N	lounted	05/07/1	9	After casing removed	caved @ 5.5'	(out
		LUG			MPLES				CLASSIFICATION (JF MATERIAL		
Depth	Casing	a 1	Dept Sample		Sample	Blows	Depth			l – 35 to 50 %		SPT
Scale	Blows/	Sample I.D.	1	~ /	Type/ Recovery	On Sampler	Of Change			ne – 20 to 35 % e – 10 to 20 %		"N" or
(Feet)	Foot		From	То	(Inches)	Per 6 inches	(feet)			$\mathbf{e} = 0$ to 10 %		RQD
0	CORE		0.0	0.5			0.5	Ast	ohalt			
v	XXX	1A	0.5	1.5	SS/18	9-13-7	0.0		L – Subbase; Grey cmf	gravel. little silt	little	20
			5.0	1.0		/	1.5		f sand (wet*)			
	Н	1B	1.5	2.0					scellaneous FILL; Brow	n/Grey silt, clav.	cmf	1
									d, cmf gravel, ash, plast			
		2	2.0	4.0	SS/14	3-3-3-3		Mis	scellaneous FILL; Grey	silt, clay, mf grav	vel,	6
	S							cm	f sand, brick, thread (mo	oist)		
		3	4.0	6.0	SS /8	3-3-4-5		Mis	scellaneous FILL; Grey	silt, cmf gravel, o	clay,	7
5	Α							cm	f sand, glass (wet)			
	XXX							Bot	ttom of Boring @ 6.0'			
10												
10												
15												
	1											
20												
-	l	L					I	I	Weight of Pod			1

GENERAL INFORMATION & KEY TO TEST BORING LOGS

The Subsurface Exploration – Test Boring Logs produced by CME Associates, Inc. present the observations and mechanical data collected by the driller while at the site, supplemented, at times, by classification of the materials removed from the borings determined through visual identification by technicians in the laboratory. It is cautioned that the materials removed from the borings represent only a fraction of the total volume of the deposits at the site and may not necessarily be representative of the subsurface conditions between adjacent borings or between the sampled intervals. The data presented on the Exploration Logs together with the recovered samples will provide a basis for evaluating the character of the subsurface conditions relative to the proposed construction. The evaluation must consider all the recorded details and their significance relative to each other. Often, analyses of standard boring data indicate the need for additional testing and sampling procedures to more accurately evaluate the subsurface conditions. Any evaluations of the contents of CME's report and the recovered samples must be performed by Licensed Professionals having experience in Soil Mechanics and Foundation Engineering. The information presented in this Key defines some of the procedures and terms used on the CME Exploration Logs to describe the conditions encountered. Refer to the Log on page 4 for key number. Description

Key No.

- 1. The figures in the **DEPTH SCALE** column define the vertical scale of the Boring Log.
- 2. CASING BLOWS/FOOT - shows the number of blows required to advance the casing a distance of 12 inches. The casing size, the hammer weight and the length of drop are noted under the Methods of Investigation. If the casing is advanced by means other than driving, the method of advancement will be indicated under Methods of Investigation at the top of the Log. If Hollow Stem Augers or Coring is used, it will be so noted in this column.
- 3. The SAMPLE I.D. is used for identification on the sample containers and in the Laboratory Test Report or Summary.
- 4. The **DEPTH OF SAMPLE** column gives the exact depth range from which a sample was recovered.
- The **SAMPLE TYPE/RECOVERY** column is used to signify the various type of sample attempt. "SS is Split Spoon, "P" is Piston tube, 5. "U" is Undisturbed tube. For soil samples, the recovered length of the sample is also indicated, in inches. If a rock core sample is taken, the core bit size designation is given here.
- BLOWS ON SAMPLER shows the results of the "Standard Penetration Test (SPT) ASTM D1586", recording the number of blows 6 required to drive a split spoon sampler into the soil beneath the casing. The number of blows required for each six inches of penetration is recorded. The total number of blows required for the 6 inch to 18 inch interval is summarized in the SPT "N" column and represents the "Standard Penetration Number". The outside diameter of the sampler, the hammer weight and the length of drop are noted in the Methods of Investigation portion of the log. A "WH" or "WR" in this column indicates that the sample spoon advanced the 6 inch interval under Weight of Hammer or Weight of Rods, respectively.
- The DEPTH OF CHANGE column designates the depth (in feet) that the driller noted a compactness or stratum change. In soft materials 7. or soil strata exhibiting a consistent relative density, it is difficult for the driller to determine the exact change from one stratum to the next. In addition, a grading or gradual change may exist. In such cases the depth noted is approximate or estimated only and may be represented by a dashed line.
- CLASSIFICATION OF MATERIAL Soil materials encountered and sampled are described by the driller on the original log. Notes of the driller observations are also placed in this column. Recovered samples may also be visually classified by a Soil Technician upon receipt in the Laboratory. Visual sample classification is by Burmister System and strata may be classified additionally by the Unified System. The Burmister System is a type of visual-manual textural classification estimated by the Driller or Technician on the basis of weight-fraction of the recovered soil. See Table 1 "Classification of Materials". The description of the relative soil compactness or consistency is based upon the standard penetration number as defined in Table 2. The description of the soil moisture condition is described as dry, moist, wet, or saturated. Water used to advance the boring may have affected the in-situ moisture content of the sample. Special terms are used as required to describe materials in greater detail, such terms are listed in ASTM D653. When sampling gravelly soils with a standard two-inch O.D. Split Spoon, the true percentage of gravel is often not recovered due to the relatively small sampler diameter. The presence of boulders, cobbles, and large gravel is sometimes, but not necessarily, detected by an evaluation of the casing and sampler blows or through the "action" of the drill rig as reported by the driller.

The Description of **Rock** is based upon the recovered rock core. Terms frequently used in the description are included in Table 3. The length of core run is defined as length of penetration between retrievals of the core barrel from the bore hole, expressed in inches. The core recovery expressed the length of core recovered from the core barrel per core run, in percent. The size core barrel used is noted in Column 5. The more commonly used sizes of core barrels are denoted "AX" and "NX". An "NX" core, being larger in diameter than "AX" core, often produces better recovery, and is frequently utilized where accurate information regarding the geologic conditions and engineering

CME Associates, Inc.

properties is needed. A better estimate of in-situ rock quality is provided by a modified core recovery ratio known as the **"Rock Quality Designation"** (**RQD**). This ratio is determined by considering only pieces of core that are at least 4 inches long and are hard and sound. Breaks obviously caused by drilling are ignored. The diameter of the core should preferably be not less than 2 inches (NX). The percentage ratio between the total length of such core recovered and the length of core drilled on a given run is the RQD. Table 4 gives the rock quality description as related to the **RQD**.

- 9. The **SPT "N"** or **RQD** is given in this column as applicable to the specific sample taken. In Very Compact coarse grained soils the N-value may be indicated as 50+, and in Hard fine-grained soils the N-value may be indicated as 30+. This typically means that the blow count was achieved prior to driving the sampler the entire 6 inch interval or the sampler refused further penetration. For the "NX" rock cores, the RQD is reported here, expressed in percent.
- 10. **GROUND WATER OBSERVATIONS** and timing noted by the driller are shown in this section. It is important to realize that the reliability of the water level observations depend upon the soil type (water does not readily stabilize in a hole through fine grained soils), and that drill water used to advance the borings may have influenced the observations. Ground water levels typically fluctuate seasonally so those noted on the log are only representative of that exhibited during the period of time noted on the log. One or more perched or trapped water levels may exist in the ground seasonally. All the available readings should be evaluated. If definite conclusions cannot be made, it is often prudent to examine the conditions more thoroughly through test pit excavations or ground water observation well installations.

TABLE 1 - VIS	TABLE 1 - VISUAL CLASSIFICATION OF MATERIALS (BURMISTER)					
GROUP	TEXTURAL CLASSIFICATION SIZES					
BOULDERS	larger than 12" diameter					
COBBLES	12" diameter to 3" sieve					
GRAVEL	3" - coarse - 1" - medium - 1/2" - fine - #4 sieve					
SAND	#4 - coarse - #10 - medium - #40 - fine - #200 sieve					
SILT	#200 sieve (0.074mm) to 0.005mm size (see below *)					
CLAY	0.005mm size to 0.001 mm size (see below *)					

ABBREVIATIONS	PERCENT OF	TOTAL SAMPLE BY WEIGHT
f - fine	and	35 to 50%
m - medium	some	20 to 35%
c - coarse	little	10 to 20%
	trace	0 to 10%

*PLASTICITY DESCRIPTIONS						
TERM	PLASTICITY INDEX	DRY STRENGTH	FIELD TEST			
Non-plastic	0-3	Very low	falls apart easily			
Slightly plastic	4 - 15	Slight	easily crushed by fingers			
Plastic	15 - 30	Medium	difficult to crush			
Highly plastic	31 or more	High	impossible to crush with fingers			

Primary Soil Type	Descriptive Term of Compactness	Range of Standard Penetration Resistance (N)
COARSE GRAINED SOILS	Very loose	less than 4 blows per foot
	Loose	4 to 10
(More than half of Material	Medium compact	10 to 30
is larger than No. 200 sieve size.)	Compact	30 to 50
	Very compact	Greater than 50
FINE GRAINED SOILS	Descriptive Term of Consistency	Range of Standard Penetration Resistance (N)
	Very soft	less than 2 blows per foot
	Soft	2 to 4
(more than half of material	Medium stiff	4 tp 8
is smaller that No. 200 sieve size)	Stiff	8 to 15
5120)	Very Stiff	15 to 30
	Hard	Greater than 30

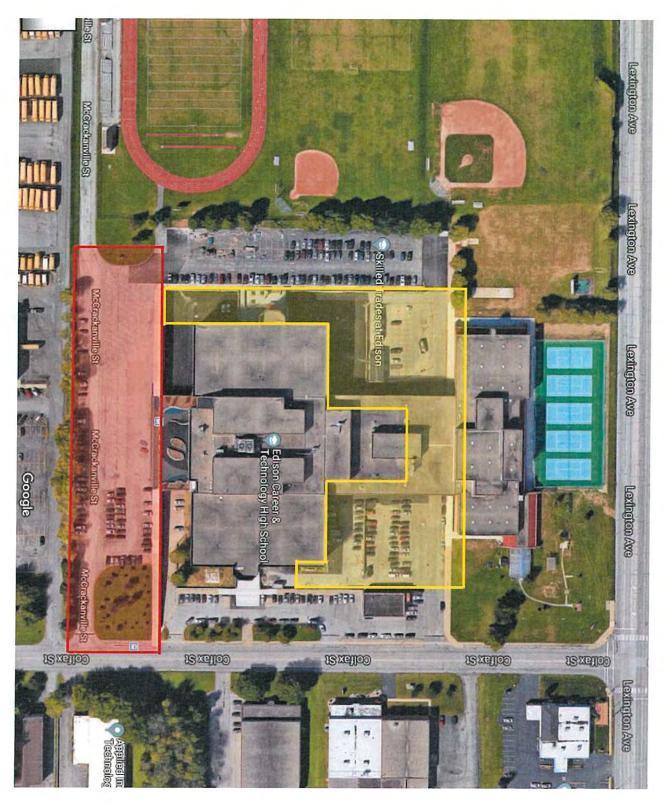

*The number of blows of 140 pound weight falling 30 inches to drive 2 inch O.D., 1-3/8 inch I.D. sampler 12 inches is defined as the Standard Penetration Resistance designated "N".

TABLE 3 - ROCK CLASSIFICATION TERMS						
Rock Class	sification Terms	Field Test or Meaning of Term				
Hardness	Soft	Scratched by fingernail				
	Medium Hard	Scratched easily by penknife				
	Hard	Scratched with difficulty by penknife				
	Very Hard	Cannot be scratched by penknife				
Weathering	Very Weathered Weathered Sound	Judged from the relative amounts of disintegration, iron staining, core recovery, clay seams, etc.				
Bedding	Laminated Thinly bedded	less than 1 inch 1 inch to 4 inches				
(Natural Breaks	Bedded	4 inches to 12 inches				
in Rock Layers)	Thickly bedded	12 inches to 36 inches				
	Massive	greater than 36 inches				

TABLE 4 Relation OF Rock Quality Designation (RQD) and in-situ Rock Quality					
RQD %	Rock Quality Term Used				
90 to 100	Excellent				
75 to 90	Good				
50 to 75	Fair				
25 to 50	Poor				
0 to 25	Very Poor				

	CME	E Associ	iates, Ir			BORING				Page 1 of 1		
SUBSURFACE EXPLORATION – TEST BORING LOG												
Project: Report No.:												
Client:								ate Started:		Finished:		
Locatio	on of Bori		See Expl	oration I	Location Pla	n	E	levation of Surface of				
Casing	• 3_1/4		ODS OF I em Auger						IEK UI	BSERVATIONS		
Casing	Hammer	:	eni riuger	Driller			Date	Time		Depth	Casii	ng At
Other:				Inspec				While drilling				
Soil Sa		2" OD Sp		Rod Si				Before casing ren				
	er Hamme & Model o			Fall:	30 ir	l .		After casing remo				
WIAKC (x mouer o		<u>g.</u> DF BOR	ING SAI	MPLES				TION (DF MATERIAL		
				th of		DI	D 1	0211002110111				CDT
Depth	Casing	Sample	Sample	e (Feet)	Sample Type/	Blows On	Depth Of	$\mathbf{c} - \mathbf{c}$ oarse		- 35 to 50 % e - 20 to 35 %		SPT "N"
Scale (Feet)	Blows/ Foot	I.D.	F	m	Recovery	Sampler	Change	$\mathbf{m} - \mathbf{m}$ edium	little	e – 10 to 20 %		or
(1001)	1001		From	То	(Inches)	Per 6 inches	(feet)	$\mathbf{f} - \mathbf{f}$ ine	trac	e - 0 to 10 %		RQD
1	2	3	4	4	5	6	7		8			9
5												
10	_											
1.5												
15	-											
20	1	1	1	1	1		1					

SS – Split Spoon, U – Undisturbed Tube, C – Core, WH – Weight of Hammer, WR – Weight of Rod **Remarks:** Page 4

4/17/19 Edison Tech Phase 2b Survey Limits

PROPOSED PAVEMENT RECONSTRUCTION LIMITS

Gary Gantney

From:	Ferreri, Michael <mferreri@labellapc.com></mferreri@labellapc.com>
Sent:	Thursday, May 23, 2019 8:55 AM
To:	Gary Gantney
Cc:	Anas Anasthas
Subject:	RE: scan

Yes, this can be used again. Nothing has changed.

Michael Ferreri LaBella Associates | Project Manager

585-770-2513 direct 585-454-6110 office

From: Gary Gantney [mailto:ggantney@cmeassociates.com] Sent: Thursday, May 23, 2019 8:41 AM To: Ferreri, Michael <MFerreri@LaBellaPC.com> Cc: Anas Anasthas <an@cmeassociates.com> Subject: FW: scan

Mike,

I have attached the estimated traffic counts used in the earlier report of two years ago for the South Parking lot. Please review this estimate and advise us if we can re-use it for this project.

Thank you,

Gary

From: Bobbi Jo Mannise <<u>bmannise@cmeassociates.com</u>> Sent: Thursday, May 23, 2019 8:31 AM To: Gary Gantney <<u>ggantney@cmeassociates.com</u>> Subject: scan

Bobbi Jo Mannise Administrative Assistant

CME Associates, Inc. 6035 Corporate Dr. East Syracuse, New York 13057 315.701.0522 (Phone) Extension 237 315.701.0526 (Fax) www.CMEAssociates.com

"A New York State Certified Woman-Owned Business Enterprise (WBE)" Please consider the environment before printing this email. Thank You!

ATTACHMENT TO CHE REPORT NUMBER: 27498.B-02-0619

Anas Anasthas

From:	Short, Michael <mshort@labellapc.com></mshort@labellapc.com>
Sent:	Thursday, May 11, 2017 4:59 PM
To:	Anas Anasthas
Cc:	Andrew Britton; Stanley Nwokebuihe; AuClair, Mark A.
Subject:	RE: CME#27226: Edison Tech, Rochester NY

Anas,

Per our understanding we will need to up the bus to 46 vs 36

Michael Short, AIA, LEED AP BD+C LaBella Associates, D.P.C. Direct: 585-295-5612

From: Short, Michael Sent: Thursday, May 11, 2017 4:54 PM To: 'an@cmeassociates.com' Cc: 'Andrew Britton'; 'stanley.n@cmeassociates.com'; AuClair, Mark A. Subject: FW: CME#27226: Edison Tech, Rochester NY

Anas,

I have never had these questions asked of us when we have asked for a geotechnical design. We know that buses will be driving on the entire site. Andy has taken a stab at some numbers see below, but again no traffic study was completed and we have never been asked any of this information. Please expedite the necessary information so that the asphalt section can be designed and included in our construction documents.

Michael Short, AIA, LEED AP BD+C LaBella Associates, D.P.C. Direct: 585-295-6612

From: Anas Anasthas [mailto:an@cmeassociates.com] Sent: Wednesday, May 10, 2017 8:46 AM To: Andrew Britton <<u>ABritton@edrdpc.com</u>> Cc: Stanley Nwokebuihe <<u>stanley.n@cmeassociates.com</u>> Subject: CME#27226: Edison Tech, Rochester NY

Hi Andy,

Thank you for taking my call. Could you please forward us the grading plan for the subject project along with the following traffic loading information. Please provide the traffic information for each parking lot area planned to be reconstructed.

- 1. Design Life 20 years ?
- 2. Growth Rate? (OY. USED)
- AADT (Annual Average Daily Traffic): *This assumes that a trip consists of driving in over the surface and driving back out over the surface.
 - a. Passenger cars (number of trips per day): [Assuming 90% are cars] 360 cars x 1 trip/day = 360 TPD

ATTALIMIENT TO CIVE PERDOZT NUMBER: 27938-02-0619

- b. Pickup trucks (number of trips per day): [Assuming 10% are pickup trucks] 40 pickups x 1 trip/day = 40 TPD
- c. Busses (number of trips per day): 18 buses x 2 trips/day = 36 TPD
- d. Delivery trucks (number of trips per day): 2 trucks x 1 trip/day = 2 TPD
- e. Trash removal trucks/other trucks (number of trucks per day): 1 truck x 1 trip/day = 1 TPD
- f. Tractor trailers(number of trips per day): 1 truck x 1 trip/day = 1 TPD

**Also, the District has asked that the entrances be larger concrete aprons (or something built to last longer) surrounding the trench drains as these areas sustain significant damage. We were just asked this vesterday.

As we spoke, Tensar is designing a pavement section with geogrid reinforcement and they need the above information for their design. Thank you.

Anas N. Anasthas, PE Geotechnical Engineer

CME Associates, Inc. 6035 Corporate Drive East Syracuse, NY 13057 Phone 315,701 0522 Ext. 124 Fax: 315 701.0526 www.CMEAssociates.com

A New York State Certified Woman-Owned Business Enterprise (WBE) Please consider the environment before printing this email. Thank you!

Tensar International Corporation 2500 Northwinds Parkway Alpharetta, GA 30009 Tel: 770.344.2090 Mob: 412.996.7531 sluptak@tensarcorp.com

Roadway Design Report

Edison Tech Pavement Reconstruction Project

Prepared for: CME Associates Anas N. Anasthas, PE Gary M. Gatney, PE

Date: June 4, 2019

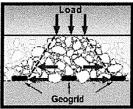
Prepared by: Stephen A. Luptak, PE NY PE # 090625

1. Introduction

Tensar International Corporation (TIC) has performed a set of analyses and prepared this report. This report provides guidance on a heavy-duty asphalt pavement section proposed for sitework at Edison Tech, Rochester, New York. The report presents analysis results, arrived at using industry design parameters, pavement design standards, and TIC design experience. The scope of work that TIC proposes to carry out and preliminary design recommendations are presented.

The documents and communications referenced by TIC in preparing the design are presented in Appendix A.

It is the responsibility of the Client to provide any updated documents to TIC that would affect the design of the pavement and pavement base aggregate. TIC has relied primarily on information contained in the geotechnical report by CME numbered - 27498-01-0519. We have also relied on email and verbal conversations with representatives for the owner and owner's engineers regarding traffic counts, project photos, etc. The design recommendations contained within this report should be reviewed by the project geotechnical engineer in order to verify the accuracy of any assumptions made regarding the design input parameters, prior to commencement of any construction activity. TIC has not and will not perform any independent geotechnical investigation or verification of the assumptions made in preparing this report.


2. Project Description and Proposed Scope of Work

TIC has prepared this report using the Spectra Roadway Improvement Systems. The Spectra Systems consist of Tensar Structural Geogrids and conventional roadway and roadbed components/materials.

The roadway designs contained herein are intended to provide a roadway section that will meet the structural design life requirements. No other parts of the roadway design, including but not limited to, surface drainage, development of specifications for traditional roadway components or control of the work are addressed herein. All design recommendations contained within this document should be considered preliminary. Any party accepting this document does so in confidence and agrees that it shall not be duplicated in whole or in part, nor disclosed to others without the consent of Tensar International Corporation.

3. Tensar Structural Geogrids

Tensar TriAx® (TX) Geogrids are manufactured using select grades of high-density polypropylene (PP) resins that are formed into a continuous sheet then punched and drawn to form a geogrid structure. For aggregate reinforcement to work, it is necessary to transfer the loads from the unbound aggregate into the stiff geogrid. With Tensar Geogrids, this is achieved through Mechanical Interlock, a process whereby the granular particles partially penetrate the apertures of the geogrid and lock into place as the overlying material is compacted. Because of Tensar's patented manufacturing process, the

junction strength and stiffness of Tensar geogrids make them the best suited geosynthetics for providing lateral restraint. The geogrid confined aggregate results in a stiffer base course and a lower dynamic deflection of the pavement/roadbed structure during traffic loading.

4. TriAx® Geogrid superiority to Biaxial Geogrid

Geogrid usage has evolved steadily since the technology was first introduced in the early 1980's. Tensar Biaxial Geogrids have gained widespread acceptance in the Americas and elsewhere over the last 25 years, primarily as a solution to problems associated with roadways, haul roads and working surfaces constructed on soft or problematic subgrades. By examining all the design characteristics of biaxial geogrids and as a result of independent testing and research, the TIC development team identified the key geogrid properties that affect performance. These include the profile of the rib section, rib thickness, junction efficiency, aperture size, and in-plane stiffness. This research resulted in a revolutionary change from a rectangular to a triangular shaped grid aperture. This fundamental change to the grid structure, coupled with an increase in rib thickness and junction efficiency, results in greatly improved aggregate confinement and interaction, leading to improved structural performance of the Mechanically Stabilized Layer (MSL). The new TriAx® Geogrid outperforms biaxial geogrids for the following reasons:

Load Distribution

- Load distribution is 3-dimensional in nature and acts radially at all levels within the aggregate.
- For a stabilized layer to be effective it must have the ability to distribute load through 360 degrees.

To ensure optimum performance, the geogrid reinforcement in an MSL should have a high radial stiffness throughout the full 360 degrees.

Junction Integrity

• TriAx® is produced from an extruded sheet of polypropylene. This is then punched with an array of holes and stretched to create the unique TriAx® structure. This Tensar process, coupled with the design of the junctions, results in a product with high junction strength and stiffness.

Junction Efficiency

• Rigorous testing has been conducted in fine with each of the three rib directions. In each direction tested, the junction strength was found to be essentially equal to the rib strength - giving a junction efficiency of 100%.

Multi -Directional Properties

• Biaxial geogrids have tensile stiffness predominantly in two directions. TriAx® geogrids have three principal directions of stiffness, which is further enhanced by their rigid triangular geometry. This produces a significantly different structure than any other geogrid and provides high strength and stiffness around 360 degrees. TriAx® is a truly

multi-directional product with near isotropic properties and proven multi-directional performance.

Proving the Importance of Rib Profile

- TriAx® geogrids have greater rib depth compared with conventional biaxial geogrids.
- Trafficking tests and analytical modeling techniques were undertaken to compare performance advantages between the two forms of geogrid with various rib depths. The results were conclusive in confirming that a much-improved structural performance of an MSL was achieved with the TriAx® geogrid. Numerical modeling techniques also confirmed the importance of geogrid rib thickness on aggregate confinement and load dissipation.

5. Spectra Roadway Improvement System Design Models

Current pavement design methods, including the American Association of State Highway and Transportation Officials (AASHTO) R 50 -09 "Standard Practice for Geosynthetic Reinforcement of the Aggregate Base Course of Flexible Pavement Structures", offer a convenient method for designing geogrid-reinforced pavements. AASHTO R 50-09 indicates that geogrids can be expected to provide one or both of the following benefits:

- 1. Improved or extended service fife
- 2. A reduction in the thickness of the structural section

The improvements to the pavement system provided by geogrid reinforcement are frequently quantified using the following design parameters:

- Traffic Benefit Ratio (TBR) defined as the ratio of the number of load cycles of a reinforced pavement structure to reach a defined failure state, to the number of loads for the same unreinforced section to reach the same defined failure state.
- Base Course Reduction Factor (BCR) defined as the percentage of the base or subbase thickness in an unreinforced pavement that can be removed using a geogrid with no loss in performance.

TIC has quantified the stiffness enhancement provided by Tensar Geogrids based on an extensive body of research work carried out both by TIC and independent researchers. This research work includes full-scale in ground performance tests, laboratory testing and state-of-the-art numerical modeling techniques.

In many cases the effect of a geogrid on the performance of a pavement structure can be empirically related to the layer coefficients of the aggregate base. The models developed include but are not limited to:

- Enhanced layer coefficients for aggregate base materials for use with the AASHTO 1993 design method
- Enhanced Modulus values for unbound aggregate used in M-E design methods

The design methods and the benefit assigned for the incorporation of a geogrid for any particular project will depend upon the pavement materials used, the original design thickness of

the pavement, the anticipated mode of failure and the optimization of the design. All models are based on increased contact forces and stresses around the geogrid, the stiffness of the adjacent unbound aggregate being increased significantly, and improved overall pavement performance. General trends relating geogrid benefits observed from previous studies indicate that the effects of aggregate confinement increase with decreasing subgrade strength and is sensitive to the pavement layer thickness. The Enhanced layer coefficients were utilized for this project because of the design method employed.

6. Design Parameters

Based upon the details in the geotechnical report provided by CME, industry standard design methodology, and traffic counts provided by the owner's engineers, the following parameters were used in the design analysis for the asphalt pavement section:

Layer	Description	Layer Coefficient	Drainage Coefficient
ACC1	Hot Mix Asphalt Surface Course	0.44	-
ACC2	Hot Mix Asphalt Binder Course	0.40	-
ABC	Aggregate Base Course	0.14	1.0

Table 1 Material Properties

Parameter	Value
Analysis Period (years)	20
Design ESAL	742,000
Design Reliability (%)	95 ¹
Standard Normal Deviate	-1.645 ¹
Standard Deviation	0.49 ¹
Change in Serviceability (Initial & Terminal)	4.2 - 2.0 ¹
Subgrade Resilient Modulus	9,000 psi ²

Table 2 Input Parameters for AASHTO (1993) Equation

1. SpectraPave[™] default settings, typically used for pavements where disruption due to reconstruction is problematic.

2. Subgrade soil resilient modulus assumed based on design and recommendations from geotechnical report by CME report # 27498-01-0519.

7. Pavement Design Recommendation

The asphalt pavement section reinforced with Tensar TX5 TriAx® Geogrid was designed to minimize the undercut required to stabilize the subgrade without loss in pavement design strength. The calculated Equivalent Single Axle Loadings or ESALs is presented below. The effect of including the geogrid was calculated by the SpectraPave[™] software.

	Description	
Layer	Description	Stabilized
ACC1	Hot Mix Asphalt, Type 7 Top Course	1.5 inches
ACC2	Hot Mix Asphalt, Type 3 Binder Course	2.5 inches
ABC	Sub-base Course, Type 2	6.0 inches
Geogrid	-	Tensar TX7
ABC	Sub-base Course, Type 2	9 inches
Geogrid		Tensar TX7
ESALs	As calculated by SpectraPave [™]	1,017,000
Performance vs Traffic Volume	Percentage of excess ESALs	37%

The proposed geogrid-reinforced pavement section is presented below:

Table 3 Pavement Design Summary

In addition to the above proposed section, TIC is compelled to point out the following additional considerations that will be critical to the success of the project as well as recommendations for pavement maintenance.

Construction Quality Control

The geotechnical engineer should provide the specifications for construction of the pavement section including QC guidelines for all pavement materials. In addition, the geotechnical engineer for the project should provide QC oversight during the preparation of the subgrade, confirmation of subgrade conditions, base course material and the asphalt paving operations.

The contractor should follow the recommendations for placement of the geogrid as required in the plans and in the Spectra System Installation Guide attached or included as an Appendix.

Pavement Maintenance

This section will experience conventional pavement's failure mode (rutting and AC cracking) at the end of design life. Another mode of pavement deterioration is aging effects as a result of the normal weathering process caused by solar radiation and oxidation. To avoid major full depth repair within design life, it is important to seal cracks in a timely manner to prevent water infiltration into the subgrade through the cracks.

By addressing pavement deterioration before the onset of serious damage, pavement preservation extends service life and defers more expensive remedies. The recommendations provided in this section are general in nature. The development of a project specific, comprehensive maintenance plan is beyond the scope of this report.

8. Report Limitations

The designs presented herein are based on information provided by others to TIC (see Appendix A, References). TIC has exercised the right to rely on this information in performing this design. TIC understands that this information has been or will be reviewed and confirmed to be true and correct by the appropriate parties. In the event that this information is deemed to have changed at any point during the design, TIC should be notified so that it may review the design based on the changed parameters.

This design is based upon specific properties of the specific Tensar products incorporated herein which are proprietary to TIC. Any substitution of the specified products will invalidate this design. This design is being furnished for use on this specific project. Any party accepting this document does so in confidence and agrees that it shall not be duplicated in whole or in part, nor disclosed to others without the consent of Tensar International Corporation.

Appendix A: References

AASHTO (1993). Guide for the design of pavement structures; The American Association of State Highway and Transportation Officials

AASHTO (2006). Standard Practice for Geotextiles - M288, Standard Specifications for Transportation Materials and Methods of Sampling and Testing. 251h Edition, American Association of State Highway and Transportation Officials, Washington, D.C.

AASHTO (2009). Standard Practice for Geosynthetic Reinforcement of the Aggregate Base Course of Flexible Pavement Structures, American Association of State Highway and Transportation Officials, Publication R 50-09, Washington, D.C.

Tensar International Corporation (2010)," Tensar TriAx® Geogrid Paved Applications Design Method", Tensar International Corporation, Atlanta, GA

Soils Investigation Report – Edison Tech Pavement Reconstruction Project, prepared by CME Associates, Inc., report number 27498-01-0519, dated 05/19/17.

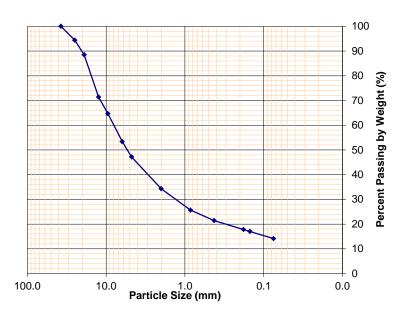
www.cmeassociates.com

LABORATORY TEST SUMMARY Edison Tech North Parking Lot Pavement Reconstruction Project, Rochester, NY CME Report No.: 27498L-01-0519 May 23, 2019 Page 1 of 3

CME Representatives obtained soil samples from Test Borings advanced as part of the Subsurface Exploration Program conducted for the subject project. Selected samples were delivered to CME's East Syracuse facility, an AASHTO re:source¹ accredited laboratory for various laboratory testing. The results are presented below:

Sample ID Notations: B - Test Boring, S - Sample

I. Natural Moisture Content (ASTM D2216)


Sample ID	Natural Moisture (%)	
B-101; S-3	13.0	
B-102; S-3	15.9	

II. Particle Size Analysis (ASTM D422)

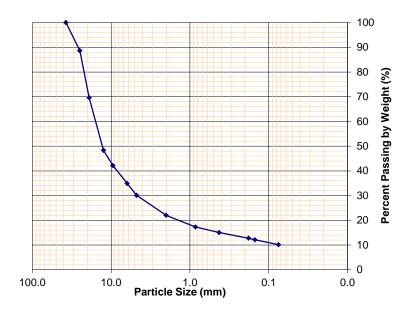
<u>Sample #</u> B-101; S-1A

% Passing Sieve **Sieve Size** by Dry **Designation** <u>(mm)</u> Weight 1-1/2" 37.5 100 1" 25.0 94 88 3/4" 19.0 1/2"12.5 71 3/8" 9.5 65 1/4" 6.25 53 4.75 47 No.4 2.00 34 No.10 No.20 0.850 26 0.425 21 No.40 0.180 No.80 18 No.100 0.150 17 0.075 No.200 14

<u>Classification</u> Grey cmf GRAVEL, some cmf SAND, little SILT <u>Grain Size Distribution Curve</u>

¹AASHTO re:source – American Association of State Highway & Transportation Officials (AASHTO) Materials Reference Laboratory, a Federal Agency having jurisdiction to assess laboratory competency according to the Standards of the United States of America. CME East Syracuse accreditation includes testing of Portland Cement Concrete, Aggregate and Soil Materials. www.AASHTOresource.org.

A New York State Certified Woman-Owned Business Enterprise (WBE)


Laboratory Test Summary CME Report No.: 27498L-01-0519 Page 2 of 3

<u>Sample #</u> B-102; S-1A

		% Passing
Sieve	Sieve Size	by Dry
Designation	<u>(mm)</u>	<u>Weight</u>
1-1/2"	37.5	100
1"	25.0	89
3/4"	19.0	70
1/2"	12.5	48
3/8"	9.5	42
1/4"	6.25	35
No.4	4.75	30
No.10	2.00	22
No.20	0.850	17
No.40	0.425	15
No.80	0.180	13
No.100	0.150	12
No.200	0.075	10

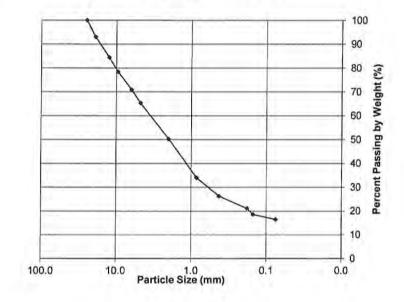

<u>Classification</u> Grey cmf GRAVEL, some cmf SAND, little SILT <u>Grain Size Distribution Curve</u>

<u>Sample #</u> B-103; S-1A

		% Passing
Sieve	Sieve Size	by Dry
Designation	<u>(mm)</u>	Weight
1-1/2"	37.5	100
1"	25.0	90
3/4"	19.0	80
1/2"	12.5	66
3/8"	9.5	57
1/4"	6.25	49
No.4	4.75	45
No.10	2.00	35
No.20	0.850	24
No.40	0.425	19
No.80	0.180	15
No.100	0.150	14
No.200	0.075	11

<u>Classification</u> Grey cmf GRAVEL, some cmf SAND, little SILT <u>Grain Size Distribution Curve</u>

Laboratory Test Summary CME Report No.: 27498L-01-0519 Page 3 of 3



Sample

B-104; S-1A

<u>Classification</u> Grey cmf SAND and mf GRAVEL, little SILT <u>Grain Size Distribution Curve</u>

Sieve	Sieve Size	% Passing by Dry
Designation	<u>(mm)</u>	Weight
1"	25.0	100
3/4"	19.0	93
1/2"	12.5	84
3/8"	9.5	78
1/4"	6.25	71
No.4	4.75	65
No.10	2.00	50
No.20	0.850	34
No.40	0.425	26
No.80	0.180	21
No.100	0.150	18
No.200	0.075	16

<u>Sample #</u> B-105; S-1A

Sieve

Designation

1-1/2"

1"

3/4"

1/2"

3/8"

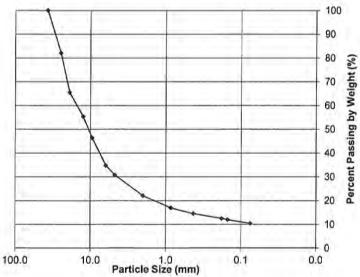
1/4"

No.4

No.10

No.20

No.40


No.80

No.100

No.200

		Grain Size
	% Passing	(
Sieve Size	by Dry	
<u>(mm)</u>	Weight	
37.5	100	•
25.0	82	
19.0	65	
12.5	55	
9.5	46	× I
6.25	35	
4.75	31	<u> </u>
2.00	22	
0.850	17	
0.425	14	
0.180	12	
0.150	12	
0.075	10	
		244 A

Classification Grey cmf GRAVEL, some cmf SAND, little SILT **Distribution Curve**

If you have any questions regarding this report please contact our office.

Michael Curry Laboratory Supervisor

SECTION 122413 - ROLLER WINDOW SHADES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
 - A. Section Includes:
 - 1. Manual-operated roller shades with single rollers.
- 1.3 ACTION SUBMITTALS
 - A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, features, finishes, and operating instructions for roller shades.
 - B. Shop Drawings: Show fabrication and installation details for roller shades, including shadeband materials, their orientation to rollers, and their seam and batten locations.
 - C. Samples: For each exposed product and for each color and texture specified, 10 inches long.
 - D. Samples for Initial Selection: For each type and color of shadeband material.
 - 1. Include Samples of accessories involving color selection.
 - E. Samples for Verification: For each type of roller shade.
 - 1. Shadeband Material: Not less than 10 inches square. Mark interior face of material if applicable.
 - 2. Roller Shade: Full-size operating unit, not less than 16 inches wide by 36 inches long for each type of roller shade indicated.
 - 3. Installation Accessories: Full-size unit, not less than 10 inches long.
 - F. Product Schedule: For roller shades. Use same designations indicated on Drawings.

- 1.4 INFORMATIONAL SUBMITTALS
 - A. Qualification Data: For Installer.
 - B. Product Certificates: For each type of shadeband material.
 - C. Product Test Reports: For each type of shadeband material, for tests performed by a qualified testing agency.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For roller shades to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Roller Shades: Full-size units equal to 5 percent of quantity installed for each size, color, and shadeband material indicated, but no fewer than two units.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: Fabricator of products.
- B. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for fabrication and installation.
 - 1. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 2. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver roller shades in factory packages, marked with manufacturer, product name, and location of installation using same designations indicated on Drawings.

1.9 FIELD CONDITIONS

- A. Environmental Limitations: Do not install roller shades until construction and finish work in spaces, including painting, is complete and dry and ambient temperature and humidity conditions are maintained at the levels indicated for Project when occupied for its intended use.
- B. Field Measurements: Where roller shades are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication and indicate measurements on Shop Drawings. Allow clearances for operating hardware of operable glazed units through entire operating range. Notify Architect of installation conditions that vary from Drawings. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturer offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. <u>Basis of Design Product</u>: Subject to compliance with the requirements, provide products from one of the following:
 - 1. 3G-Mermet Company (Basis of Design)
 - 2. Drapery Industries
 - 3. Draper, Inc.
 - 4. Architect approved equal
- C. Source Limitations: Obtain roller shades from single source from single manufacturer.

2.2 MANUALLY OPERATED SHADES WITH SINGLE ROLLERS

- A. Basis of Design Product: 3G-Mermet Company, M-Screen #8503 Window Shades
- B. Chain-and-Clutch Operating Mechanisms: With continuous-loop bead chain and clutch that stops shade movement when bead chain is released; permanently adjusted and lubricated.
 - 1. Bead Chains: #10 Stainless steel.
 - a. Loop Length:
 - 1) Length required for bottom of chain to fall at 42"H above finished floor.

- b. Limit Stops: Provide 5/16" diameter NPB along length of loop to prevent shade from traveling beyond the opening of the window.
- c. Chain-Retainer Type: Chain tensioner, sill mounted at window types B and C.
- 2. Spring Lift-Assist Mechanisms: Manufacturer's standard for balancing roller shade weight and for lifting heavy roller shades.
 - a. Provide for shadebands that weigh more than 10 lb or for shades as recommended by manufacturer, whichever criterion is more stringent.
- C. Rollers: Corrosion-resistant steel or extruded-aluminum tubes of diameters and wall thicknesses required to accommodate operating mechanisms and weights and widths of shadebands indicated without deflection. Provide with permanently lubricated driveend assemblies and idle-end assemblies designed to facilitate removal of shadebands for service.
 - 1. Roller Drive-End Location: Right side of interior face of shade.
 - 2. Direction of Shadeband Roll: Regular, from back (exterior face) of roller.
 - 3. Shadeband-to-Roller Attachment: Double sided tape designed to adhere PVC coated textiles to aluminum or steel.
- D. Mounting Hardware: Brackets or endcaps, corrosion resistant and compatible with roller assembly, operating mechanism, installation accessories, and mounting location and conditions indicated. All hardware to match in color.
- E. Roller-Coupling Assemblies: Coordinated with operating mechanism and designed to join up to three inline rollers into a multiband shade that is operated by one roller driveend assembly.
- F. Shadebands:
 - 1. Shadeband Material: Light-filtering fabric.
 - 2. Shadeband Bottom (Hem) Bar: Steel or extruded aluminum.
 - a. Type: Enclosed in sealed pocket of shadeband material.
 - b. Color and Finish: As selected by Architect from manufacturer's full range.
- G. Installation Accessories:
 - 1. Front Fascia: Aluminum extrusion that conceals front and underside of roller and operating mechanism and attaches to roller endcaps without exposed fasteners. Fascia can be mounted continuously across two or more shadebands.
 - a. Shape: L-shaped.
 - b. Height: Manufacturer's standard height required to conceal roller and shadeband assembly when shade is fully open.

- 2. Endcap Covers: To cover exposed endcaps.
- 3. Front facias and end caps to be furnished in color and finish as selected by the Architect from Manufacturer's full range.

2.3 BAND MATERIALS

- A. Shadeband Material Flame-Resistance Rating: Comply with NFPA 701-10 TM#1 & California U.S. Title #19. Testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
- B. Light-Filtering Fabric: Woven fabric, stain, peel, and fade resistant.
 - 1. Source: 3G-Mermet Company.
 - 2. Type: PVC-coated fiberglass.
 - 3. Weight: 12.21 ounces per square yard.
 - 4. Openness Factor: 3 percent.
 - 5. Color: As selected by Architect from manufacturer's full range.

2.4 ROLLER SHADE FABRICATION

- A. Product Safety Standard: Fabricate roller shades to comply with WCMA A 100.1, including requirements for flexible, chain-loop devices; lead content of components; and warning labels.
- B. Unit Sizes: Fabricate units in sizes to fill window and other openings as follows, measured at 74 deg F:
 - 1. Between (Inside) Jamb Installation: Width equal to jamb-to-jamb dimension of opening in which shade is installed less 1/4 inch per side or 1/2-inch total, plus or minus 1/8 inch. Length equal to head-to-sill or -floor dimension of opening in which shade is installed less 1/4 inch, plus or minus 1/8 inch.
 - 2. Outside of Jamb Installation: Width and length as indicated, with terminations between shades of end-to-end installations at centerlines of mullion or other defined vertical separations between openings.
- C. Shadeband Fabrication: Fabricate shadebands without battens or seams to extent possible, except as follows:
 - 1. Vertical Shades: Where width-to-length ratio of shadeband is equal to or greater than 1:4, provide battens and seams at uniform spacings along shadeband length to ensure shadeband tracking and alignment through its full range of movement without distortion of the material.
 - 2. Railroaded Materials: Railroad material where material roll width is less than the required width of shadeband and where indicated. Provide battens and seams as

required by railroaded material to produce shadebands with full roll-width panel(s) plus, if required, one partial roll-width panel located at top of shadeband.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, operational clearances, locations of connections to building electrical system, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 ROLLER SHADE INSTALLATION

- A. Install roller shades level, plumb, and aligned with adjacent units according to manufacturer's written instructions.
 - 1. Opaque Shadebands: Located so shadeband is not closer than 2 inches to interior face of glass. Allow clearances for window operation hardware.
- B. Electrical Connections: Connect motor-operated roller shades to building electrical system.
- C. Roller Shade Locations: As indicated in window-covering schedule at the end of this section.

3.3 ADJUSTING

A. Adjust and balance roller shades to operate smoothly, easily, safely, and free from binding or malfunction throughout entire operational range.

3.4 CLEANING AND PROTECTION

- A. Clean roller shade surfaces, after installation, according to manufacturer's written instructions.
- B. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer, that ensure that roller shades are without damage or deterioration at time of Substantial Completion.
- C. Replace damaged roller shades that cannot be repaired, in a manner approved by Architect, before time of Substantial Completion.

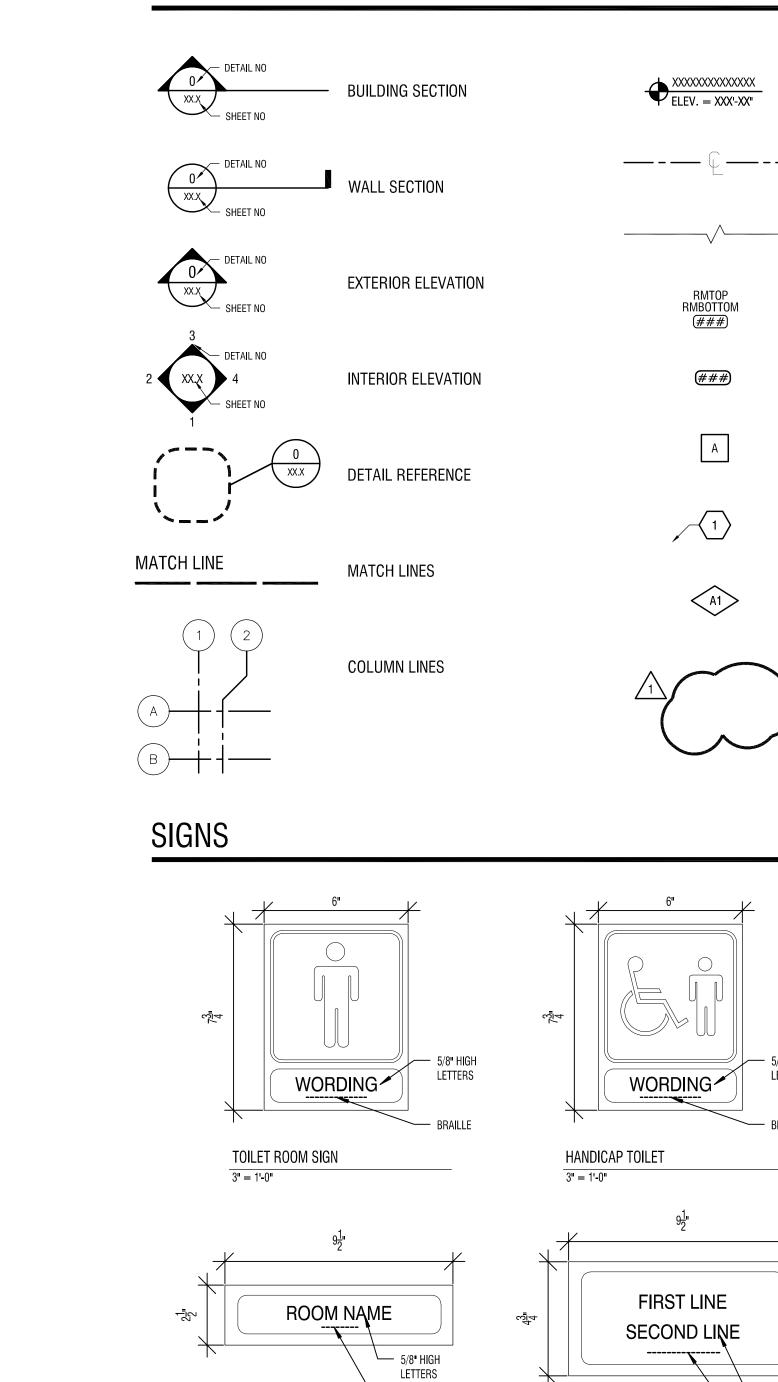
3.5 TESTING AND DEMONSTRATION

- A. Test motorized window shades to verify that controls, limit switched, interface to other building systems, and other operating components are functions. Correct deficiencies.
- B. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain motor-operated roller shades.

WINDOW TYPE	SHADE QUANTITY	SIZE
4	4	3'-10" L x 4'-8" H
9	5	3'-10" L x 4'-8" H
10	3	3'-10" L x 4'-8" H

ROLLER SHADE SCHEDULE

DOOR NUMBER	FRAME TYPE	SHADE QUANTITY	SIZE
1A5.1	A2	3	3'-10" L x 3'-8" H
1A10.1	A1	2	3'-10" L x 3'-8" H


END OF SECTION 122413

SITE MAP Elton Ave Kodak Park Kodak Par BJ's Wholesale PROJECT LOCATION McCrackanville Trolley Blvd Albert St 00 ⁰² 1) Lvell Ave Lyell Ave State Highway 31 State Highw

MATERIAL SYMBOLS

CONCRETE MASONRY UNITS (CMU)	STONE, GRAVEL, (FILL
CONCRETE	WOOD (FINISHED)
BRICK	WOOD (ROUGH)
CEMENT, SAND, GROUT, PLASTER, OR GYPSUM WALL BOARD	RIGID INSULATION
EARTH	STEEL

REFERENCE SYMBOLS

BRAILLE

ROOM NAME SIGN (2 LINE)

3" = 1'-0"

ROOM NAME SIGN 3" = 1'-0"

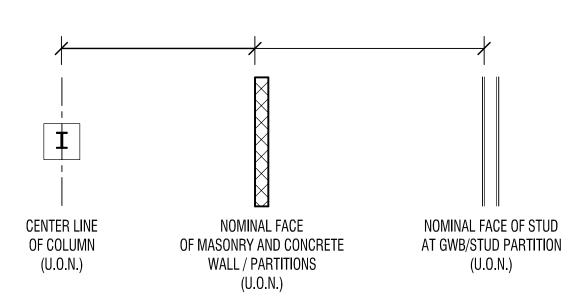
, OR POROUS

ASPHALT

BEDROCK

PAVEMENT SECTION

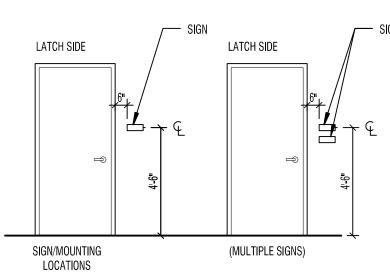
BATT. OR LOOSE INSULATION


ELEVATION $----- \bigcirc ---- \bigcirc ---- \bigcirc$ CENTER LINE CUT LINE ROOM IDENTIFIER DOOR IDENTIFIER WINDOW TYPE

KEYNOTE

WALL TYPE

REVISION SYMBOL AND CLOUD


GENERAL NOTES

- CONSTRUCTION SHALL CONFORM TO THE "NEW YORK STATE UNIFORM FIRE PROTECTION AND BUILDING CODE", LATEST REVISION, THE NEW YORK STATE ENERGY CODE AND ANY OTHER CODES GOVERNED BY THE JURISDICTION IN WHICH THE PROJECT IS BEING CONSTRUCTED.
- CONSTRUCTION SHALL COMPLY WITH ALL LOCAL, STATE AND FEDERAL CODES AND REGULATIONS. ALL DRAWINGS ARE GRAPHIC REPRESENTATIONS OF APPROXIMATE LOCATIONS OF NEW MATERIALS. IT IS THE CONTRACTOR'S
- RESPONSIBILITY TO FIELD VERIFY ALL CONDITIONS PRIOR TO COMMENCEMENT OF WORK.
- CONTRACTORS ARE RESPONSIBLE FOR ALL MATERIALS, CONSTRUCTION METHODS AND CRAFTSMANSHIP.
- CONTRACTORS ARE TO VERIFY ALL EXISTING CONDITIONS, REQUIREMENTS, NOTES, CODES AND DIMENSIONS, PRIOR TO THE START OF CONSTRUCTION AND SHALL NOTIFY THE ARCHITECT IF CONDITIONS VARY FROM THOSE SHOWN ON THE DOCUMENTS.
- CONTRACTORS ARE TO PROVIDE ADEQUATE SUPPORT OF EXISTING FOUNDATION WALLS, LOAD BEARING WALLS AND PARTITIONS DURING DEMOLITION AND CONSTRUCTION
- THOROUGHLY COORDINATE WORK WITH OTHER TRADES AND DETERMINE THE EXACT ROUTE AND LOCATION OF UTILITIES, MATERIALS AND EQUIPMENT BEFORE FABRICATION AND INSTALLATION.

ABBREVIATIONS

АСТ	ACOUSTICAL CEILING TILE	FIN	FINISH (ED
AFF	ABOVE FINISH FLOOR	FL	FLOOR
AFG	ABOVE FINISH GRADE	FT	FOOT OR FEET
AHU	AIR HANDLING UNIT		
ALUM	ALUMINUM	GALV	GALVANIZED
ALT	ALTERNATE	GC	GENERAL CONTRACTOR
APPROX	APPROXIMATE (LY)	GWB	GYPSUM WALL BOARD
AVG	AVERAGE	0.112	
		HC	HEATING, VENTILATING AND AIR
BLDG	BUILDING		CONDITIONING CONTRACTOR
BO	BOTTOM OF	HVAC	HEATING, VENTILATING AND AIR
BUR	BUILT UP ROOF		CONDITIONING
		HORIZ	HORIZONTAL
CFM	CUBIC FEET PER MINUTE		
CFMF	COLD FORMED METAL FRAMING	D	INSIDE DIAMETER
CJ	CONTROL JOINT	IN	INCH
CLG	CEILING	INSUL	INSULATION
CLR	CLEAR	INT	INTERIOR
CIP	CAST IN PLACE		
CMU	CONCRETE MASONRY UNIT	LOC	LOCATION
COL	COLUMN		
CONC	CONCRETE	MAX	MAXIMUM
CONT	CONTINUOUS	MFG	MANUFACTURER
CU	CUBIC	MECH	MECHANICAL
		MIN	MINIMUM
DEMO	DEMOLISH	MISC	MISCELLANEOUS
DIA	DIAMETER	MO	MASONRY OPENING
DWG	DRAWING	MTD	MOUNTED
		MTG	MOUNTING
EC	ELECTRICAL CONTRACTOR		
ELEV	ELEVATION	NA	NOT APPLICABLE
EPDM	ETHYLENE PROPYLENE DIENE MONOMER	NIC	NOT IN CONTRACT
ETR	EXISTING TO REMAIN	NTS	NOT TO SCALE
EQ	EQUAL		
EXIST	EXISTING	00	ON CENTER
EXT	EXTERIOR	OD	OUTSIDE DIAMETER
		OH	OVERHEAD
		OPP	OPPOSITE HAND

SIGN MOUNTING HEIGHTS

SIGN NOTES:

- 1. SIGN SIZES ARE APPROXIMATE AND MAY VARY BY MANUF. 2. SIGN COLOR TO BE SELECTED BY ARCHITECT
- 3. CENTER LINE OF SIGNAGE TO BE 54" A.F.F.

DIRECTIONAL SIGN (2 LINE) 3" = 1'-0"

— 5/8" HIGH — 5/8" HIGH WORDING LETTERS LETTERS WORDING - BRAILLE - BRAILLE HANDICAP TOILET 3" = 1'-0" TOILET ROOM SIGN HANDICAP SYMBOL 3" = 1'-0" 3" = 1'-0" FIRST LINE **USE STAIR DURING** ∞ 3 FIRE EMERGENCY പ്പ 2" HIGH LETTERS 5/8" HIGH LETTERS └── 5/8" HIGH BRAILLE LETTERS - BRAILLE — BRAILLE FIRE SIGN 3" = 1'-0" DIRECTIONAL SIGN 3" = 1'-0"

FLOOR SIGN 3" = 1'-0"

	LIST OF DRAWINGS:
NOMINAL FACE OF STUD AT GWB/STUD PARTITION (U.O.N.)	GENERAL G000 COVER SHEET G001 PROJECT INFORMATION & DRAWING LIST G101 FIRST FLOOR CODE PLAN G102 SECOND FLOOR CODE PLAN G103 THIRD FLOOR CODE PLAN G103 THIRD FLOOR CODE PLAN G104 GENERAL NOTES & ABBREVIATIONS V001 EXISTING CONDITIONS PLAN L001 LOGISTICS PLAN C001 DEMOLITION PLAN C002 DEMOLITION PLAN C003 DEMOLITION PLAN C101 SITE MATERIALS, LAYOUT & PLANTING PLAN C102 SITE MATERIALS, LAYOUT 4 PLANTING PLAN C103 SITE MATERIALS, LAYOUT 4 PLANTING PLAN
 WHEN EXISTING CONSTRUCTION IS REMOVED, DISTURBED, DAMAGED, REPLACED OR RENOVATED IN ANY WAY, CONTRACTORS SHALL PROVIDE PATCHING, PAINTING AND MATERIALS OF SAME TYPE AND QUALITY AS TO MATCH ADJACENT EXISTING SURFACES, UNLESS OTHERWISE NOTED. CONTRACTORS PROVIDE ALL BLOCKING, FURRING AND SHIMMING FOR INSTALLATION AND COMPLETION OF WORK. ALL NEW WORK SHALL BE PLUMB, LEVEL AND SQUARE. SCRIBE AND MAKE FIT ALL NEW TO EXISTING. CONTRACTORS VERIFY ALL DIMENSIONS BEFORE ORDERING MATERIAL OR DOING WORK. NO EXTRA COMPENSATION OR CHARGES WILL BE ACCEPTED DUE TO DIFFERENCES BETWEEN THE ACTUAL MEASUREMENTS AND MEASUREMENTS INDICATED ON THE DRAWINGS. ITEMS NOTED AS 'BY OWNER" ARE TO BE FURNISHED AND INSTALLED BY THE OWNER OR THE OWNER'S VENDOR. OWNER PROVIDED EQUIPMENT IS INDICATED FOR REFERENCE ONLY. VERIFY DIMENSIONS AND CLEARANCE REQUIREMENTS WITH ACTUAL EQUIPMENT 	C201 GRADING PLAN C202 GRADING PLAN C203 GRADING PLAN C301 UTILITY PLAN C302 UTILITY PLAN C601 DETAILS C602 DETAILS C603 DETAILS C604 DETAILS C605 DETAILS C605 DETAILS C606 AGENCY DETAILS C607 AGENCY DETAILS STRUCTURAL S001 GENERAL STRUCTURAL NOTES & DESIGN CRITERIA S101 EAST ELEVATION RETAINING WALL REPAIRS S102 EAST ELEVATION RETAINING WALL REPAIRS
PROVIDED. 14. SECURITY, WEATHERPROOPING, DUST CONTROL AND SAFETY SHALL BE THE FULL RESPONSIBILITY OF THE CONTRACTOR. IMISH (ED FLOOR PC PLAM PLAM PLASTIC LAMINATE POT OR FEET PT PRESSURE TREATED GALVANIZED QTY GALVANIZED QTY GENERAL CONTRACTOR QTY GYPSUM WALL BOARD RD HEATING, VENTILATING AND AIR REF REFERENCE CONDITIONING CONTRACTOR CONDITIONING CONTRACTOR RO ROUGH OPENING HEATING, VENTILATING AND AIR REF REFERENCE CONDITIONING CONTRACTOR RO ROUGH OPENING HEATING, VENTILATING AND AIR RU ROUGH OPENING HEATING, VENTILATING AND AIR RTU ROOF TOP UNIT HORZONTAL SIMILAR INSIDE DIAMETER SPECE NSIDE DIAMETER SS STD STANDARD LOCATION TD MAXIMUM TBD MINEROR TO MAXIMUM TBD MINICALANEOUS UNO MUNTED VOL MOUNTING VIF VERIFY IN FIELD VOL VOLUME	
<section-header><section-header><section-header></section-header></section-header></section-header>	A614 WINDOW DETAILS MECHANICAL M000 MECHANICAL NOTES, LEGENDS, AND DETAILS M001 BASEMENT DEMOLITION PLAN - AREA B, D, & E M002 BASEMENT DEMOLITION PLAN - AREA G & H M003 FIRST FLOOR DEMOLITION PLAN M004 SECOND FLOOR DEMOLITION PLAN M005 THIRD FLOOR DEMOLITION PLAN M006 PENTHOUSE 1 AND 2 DEMOLITION PLAN M007 ENLARGED DEMOLITION PLAN M007 ENLARGED DEMOLITION PLAN M008 PENTHOUSE 1 AND 2 DEMOLITION PLAN M009 PENTHOUSE 1 AND 2 DEMOLITION PLAN M009 PENTHOUSE 1 AND 2 DEMOLITION PLAN M009 PENTHOUSE 1 AND 2 DEMOLITION PLAN M010 BASEMENT NEW WORK PLAN - AREA B, D, & E M101 BASEMENT NEW WORK PLAN - AREA G & H M103 FIRST FLOOR NEW WORK PLAN M104 SECOND FLOOR NEW WORK PLAN M105 THIRD FLOOR NEW WORK PLAN M106 PENTHOUSE 1 AND 2 NEW WORK PLAN M106 PENTHOUSE 1 AND 2 NEW WORK PLAN M107 CHILLED WATER PLANT SCHEMATIC - DEMOLITION M501 CHILLED WATER PLANT SCHEMATIC - DEMOLITION M502 CHILLED WATER PLANT SCHEMATIC - NEW WORK M601 MECHANICAL DETAILS M602 MECHANICAL DETAILS M602 CONTROLS SCHEMATICS - CHILLER PLANT M902 CONTROLS SCHEMATICS - CHILLER PLANT M903 CONTROLS SCHEMATICS - CHILLER PLANT M904 DEVITORS - AHU-1-6, AHU-1E5, AHU-5-31 PLUMBING P005 PLUMBING NOTES, LEGENDS, AND SCHEDULES P404 ENLARGED DEMOLITION PLANS P402 ENLARGED DEMOLITION PLANS P402 ENLARGED DEMOLITION PLANS P404 ENLARGED DEMOLITION PLANS P405 ENLARGED DEMOLITION PLANS P404 ENLARGED DEMOLITION PLANS P405 ENLARGED DEMOLITION PLANS P404 ENLARGED DEMOLITION PLANS P405
RST LINE SIGN DIRECTIONAL SIGN (2 LINE)	E000 ELECTRICAL NOTES, SYMBOLS, & ABBREVIATIONS E001 ELECTRICAL SITE PLAN DEMO E002 ELECTRICAL SITE PLAN E012 ROOF ELECTRICAL DEMOLITION PLAN - LIGHTNING PROTECTION AREA D, E, F, G, & H E013 ROOF SPECIAL SYSTEMS PLAN - AREAS D, E, F, G, & H E101 MECHANICAL ROOM ELECTRICAL DEMOLITION PLAN E102 BASEMENT ELECTRICAL DEMOLITION PLAN - AREAS G & H E103 ROOF AND PENTHOUSE 1 ELECTRICAL DEMOLITION PLAN E104 PENTHOUSE 3 AND 5 ELECTRICAL DEMOLITION PLAN E201 MECHANICAL ROOM ELECTRICAL DEMOLITION PLAN E202 FIRST FLOOR ELECTRICAL SPECIAL SYSTEMS PLAN - AREAS A, B, C, D, & E E203 FIRST FLOOR ELECTRICAL SPECIAL SYSTEMS PLAN - AREAS A, B, C, D, & E E204 BASEMENT ELECTRICAL PLAN - AREA G/H E205 ROOF AND PENTHOUSE 1 ELECTRICAL PLAN E302B SECOND FLOOR LIGHTING PLAN

E401 ENLARGED ELECTRICAL PLANS 1ST AND 2ND FLOOR

DRAWING NUMBER:

DRAWING NAME:

PROJECT INFORMATION

REVISION	6		
NO:	DATE:	DESCRIPTION:	
1	6.28.19	BID ADDENDUM 1	
PROJECT N	IUMBER:		
		2170218	
DRAWN BY			
CRG			
REVIEWED	BY:	MES	
		MES	
ISSUED FO			
	BI	D DOCUMENTS	
DATE:			
	J	UNE 26, 2019	

SED NO. 26-16-00-01-0-111-032 DWT NO. 26-16-00-01-7-999-020

655 COLFAX STREET ROCHESTER, NY 14606

EDISON TECHNICAL SCHOOL

1776 N. CLINTON AVE ROCHESTER, NY 14621

ROCHESTER SCHOOLS MODERNIZATION PROGRAM

© 2019 LaBella Associates

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

ear 555 Penbrooke Drive • Penfield, NY 14526 main: 585.388.2060 • fax: 585.388.2070

Razak Associates ARCHITECTURE ENGINEERING LAND SURVEYING INTERIORS PLANNING LANDSCAPE 2050 FAIRPORT-NINE MILE POINT ROAD, SUITE 410 PENTILLD, NY 14520 PHONE: 585.377.3550 + FAX: 585.377.3559

Powered by partnership. 300 State Street, Suite 201 Rochester, NY 14614 585-454-6110 labellapc.com

SUPPLEMENT OF NEW YORK STATE. IT IS THE CONTRACTOR'S RESPONSIBILITY TO BECOME FAMILIAR WITH THE STATEMENT OF SPECIAL INSPECTIONS, SUBMIT ALL REQUIRED DOCUMENTATION, AND ALLOW THE OWNER'S TESTING AND INSPECTION AGENCY ACCESS TO PERFORM ALL REQUIRED TESTS AND INSPECTIONS. AS PART OF THIS PROGRAM, THE CONTRACTOR SHALL ALSO SUBMIT A COPY OF THEIR QUALITY CONTROL PROCEDURES AND CONTACT INFORMATION FOR ALL PERSONNEL RESPONSIBLE FOR EXECUTION OF THE SAME.

STRUCTURAL DESIGN LOADS AND PARAMETERS IBC SECTION 1603: CONSTRUCTION DOCUMENTS

S1 STRUCTURAL STEEL SHALL BE NEW STEEL CONFORMING TO THE FOLLOWING REQUIREMENTS:

ASTM A992

ASTM A36 ASTM A36 ASTM A36

S2 HIGH STRENGTH BOLTS, NUTS AND WASHERS SHALL CONFORM TO THE REQUIREMENTS OF ASTM A325 OR A490 (3/4"

S5 BEAM-TO-BEAM AND BEAM-TO-COLUMN CONNECTIONS SHALL BE SIMPLE SHEAR CONNECTIONS CAPABLE OF END ROTATIONS PER AISC "SPECIFICATION FOR THE DESIGN, FABRICATION AND ERECTION OF STRUCTURAL STEEL BUILDINGS" SECTION J1.2 - SIMPLE CONNECTIONS UNLESS NOTED OTHERWISE. CONNECTIONS SHALL UTILIZE HIGH STRENGTH BOLTS IN "SNUG-TIGHT" BEARING CONNECTIONS UNLESS OTHERWISE NOTED, WITH THE THREADS EXCLUDED FROM THE SHEAR PLANE. DESIGN ALL CONNECTIONS FOR THE FOLLOWING MINIMUM REACTIONS, UNLESS NOTED

> W18 - 60 KIPS W16 - 45 KIPS W14 - 45 KIPS W8 - 12 KIPS

A. W-SHAPES

B. CHANNELS

C. ANGLES

OTHERWISE:

W27 - 95 KIPS

W24 - 85 KIPS

W21 - 75 KIPS

MINIMUM DIAMETER).

D. MISC. SHAPES, PLATES, & BARS

S6 THE MINIMUM SIZE OF FILLET WELDS SHALL BE AS REQUIRED BY THE AISC SPECIFICATION SECTION J2 - WELDS, BUT SHALL NOT BE LESS THAN 1/4" UNLESS SPECIFICALLY NOTED ON THE DRAWINGS.

W12 - 30 KIPS

W10 - 15 KIPS

S7 CONNECTION TO THE EXISTING STRUCTURE SHALL BE AS DETAILED ON THE DRAWINGS OR AS APPROVED BY THE ARCHITECT. THE CONTRACTOR SHALL MAKE ALL NECESSARY FIELD MEASUREMENTS OF, COORDINATE DETAILS WITH AND FIELD VERIFY ALL EXISTING CONDITIONS PRIOR TO THE PREPARATION OF SHOP DRAWINGS.

S8 TEMPORARY ERECTION BRACING SHALL BE PROVIDED AS REQUIRED TO HOLD STRUCTURAL STEEL SECURELY IN POSITION. IT SHALL NOT BE REMOVED UNTIL PERMANENT BRACING HAS BEEN INSTALLED. THE BUILDING SHALL BE TRUE AND PLUMB BEFORE CONNECTIONS MAY BE FINALLY BOLTED OR WELDED.

S9 NOTE SPECIFICATION REQUIREMENTS FOR SPECIAL INSPECTION OF STRUCTURAL STEEL WORK. S10 WHERE NO CAMBER IS INDICATED, BEAMS SHALL BE FABRICATED WITH NATURAL CAMBER UPWARD. GOVERNING BUILDING CODE BUILDING OCCUPANCY CATEGORY DESIGN SOIL BEARING CAPACITY ROOF LIVE LOAD ROOF CONSTRUCTION LOAD SNOW LOAD

SNOW LOAD IMPORTANCE FACTOR, I GROUND SNOW LOAD, Pa

FLAT ROOF SNOW LOAD, P_f

SNOW EXPOSURE FACTOR, Ce

THERMAL FACTOR, Ct SNOW DRIFTING - MAXIMUM LOADS (PER ASCE 7-10)

WIND LOAD - MAIN WIND FORCE RESISTING SYSTEM

BASIC WIND SPEED, V WIND EXPOSURE

VELOCITY PRESSURE EXPOSURE COEFFICIENT, Kz

TOPOGRAPHIC FACTOR, Kzt WIND DIRECTIONALITY FACTOR, Kd

WIND LOAD - COMPONENTS AND CLADDING

REFER TO COMPONENTS AND CLADDING TABLE BELOW. FOR EFFECTIVE WIND AREAS BETWEEN THOSE SPECIFICALLY LISTED, LOADS SHALL BE INTERPOLATED.

<u>NOTES:</u>

1. POSITIVE AND NEGATIVE NUMBERS INDICATE FORCES/PRESSURES ACTING TOWARD AND AWAY FROM THE SURFACES RESP 2. END ZONES EXTEND FROM BUILDING CORNERS A DISTANCE EQUAL TO 10% OF THE LEAST HORIZONTAL DIMENSION BUT NO FEET.

SEISMIC LOAD

SEISMIC IMPORTANCE FACTOR, IE

SITE SOIL CLASSIFICATION

MAPPED SHORT PERIOD SPECTRAL ACCELERATION, S_S MAPPED ONE SECOND PERIOD SPECTRAL ACCELERATION, S1

SHORT PERIOD SPECTRAL DESIGN ACCELERATION, SDS

ONE SECOND PERIOD SPECTRAL DESIGN ACCELERATION, S_{D1}

SEISMIC DESIGN CATEGORY ARCHITECTURAL, MECHANICAL, ELECTRICAL, AND PLUMBING COMPONENTS REQUIRING SEISMIC BRACING

ARCHITECTURAL COMPONENTS

IMPORTANCE FACTOR, lp = 1.0

IMPORTANCE FACTOR, lp = 1.5 M / E / P COMPONENTS

IMPORTANCE FACTOR, lp = 1.0

IMPORTANCE FACTOR, lp = 1.5

(NON-LOAD BEARING WALLS ONLY) MASONRY OPENING						
UP TO 4'-0	4'-1 TO 6'-0	6'-1 TO 8'-0	DETAIL			
L 3 1/2 x 3 1/2 x 1/4 OR ST3 x 6.25			_ OR ⊥			
2 L'S 3 1/2 x 2 1/2 x5/16	WT 7 x 11	WT 7 x 11				
2 L'S 3 1/2 x 3 1/2 x 1/4	2 L'S 4 x 3 1/2 x 5/16	2 L'S 5 x 3 1/2 x 5/16				
L 5 x 3 1/2 x 1/4 L 4 x 4 x 1/4	L 5 x 3 1/2 x 5/16 L 4 x 4 x 5/16	L 5 x 5 x 5/16 L 4 x 4 x 5/16				
3 L'S 3 1/2 x 3 1/2 x 5/16	3 L'S 4 x 3 1/2 x 5/16	3 L'S 6 x 3 1/2 x 5/16				
4 L'S 3 1/2 x 3 1/2 x 5/16	4 L'S 4 x 3 1/2 x 5/16	4 L'S 6 x 3 1/2 x 5/16				
4" 6" 8" ALL ANGLES						

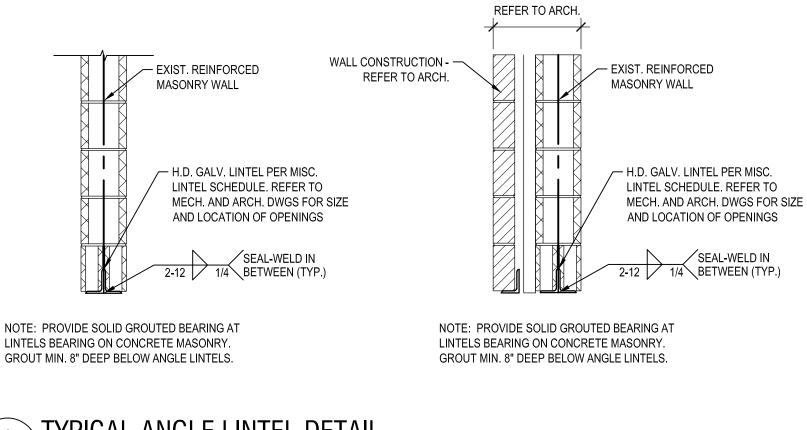
COORDINATE QUANTITY, LOCATION AND SIZES WITH ALL TRADES. 3. LINTELS ON EXTERIOR WALLS SHALL HAVE A MINIMUM THICKNESS OF 5/16".

WALL

HICKNES

4"

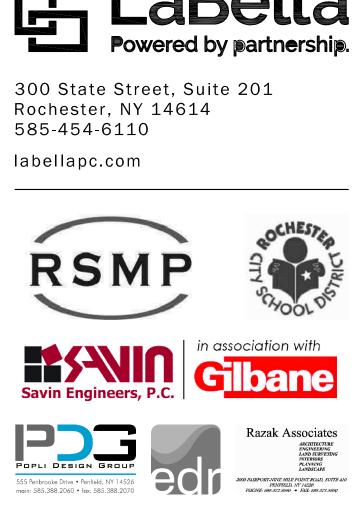
6"


8"

10"

12"

16"


4. FOR OPENINGS ON MASONRY WALLS NOT MARKED ON PLAN, USE APPROPRIATE SIZE FROM THIS TABLE OR CONTACT ARCHITECT / ENGINEER.

S001 N.T.S.

GN LOADS AND PARAME	TERS	ABB	REVIATIONS
		AFF	ABOVE FINISH FLOOR
2015 INTERNATIONAL BUILDING CODE WITH 2017 NEW YORK STATE SUP	PLEMENT	ARCH.	ARCHITECTURAL
		BRG.	BEARING
8000 PSF (ROCK - BASED ON ORIGINAL CONSTRUCTION DF	RAWINGS)	B/	BOTTOM OF
		CLR. C.J.	CLEAR CONSTRUCTION JOINT
	20 PSF	CONC.	CONCRETE
		CONT.	CONTINUOUS
	1.10	CMU	CONCRETE MASONRY UNIT
	40 PSF	DIA.	DIAMETER
	30.5 PSF	DN	DOWN
	1.00	DWG.	DRAWING
	1.00	ELEC.	ELECTRICAL
		ELEV. EQ.	ELEVATION EQUAL
		EQ. EA.	EQUAL
	120 MPH	E.W.	EACH WAY
	C	E.J.	EXPANSION JOINT
	1.08	E.J.D.	EXPANSION JOINT W/DOWEL
	1.00	ELEV.	ELEVATION
	0.85	EXIST.	EXISTING
		EXP.	EXPANSION
OR EFFECTIVE WIND AREAS BETWEEN THOSE SPECIFICALLY LISTED, DESIG	N WIND		FINISH FLOOR
		FT.	FOOT FOUNDATION
		FND. GA	GAUGE
PRESSURES ACTING TOWARD AND AWAY FROM THE SURFACES RESPECTIV	ELY.	GALV.	GAUVANIZED
ANCE EQUAL TO 10% OF THE LEAST HORIZONTAL DIMENSION BUT NOT LESS	THAN 3	HORIZ.	HORIZONTAL
		H.D.	HOT DIP
		I.D.	INSIDE DIAMETER
	1.25	LF	LINEAR FEET
D (A	SSUMED)	LLV	LONG LEG VERTICAL
	0.165 g	M.E.	MATCH EXISTING MAXIMUM
S ₁	0.060 g	MAX. MECH.	MECHANICAL
	0.176 g	MIN.	MINIMUM
S _{D1}	0.096 g	NOM.	NOMINAL
	В	N.T.S.	NOT TO SCALE
G COMPONENTS REQUIRING SEISMIC BRACING		O.D.	OUTSIDE DIAMETER
		0.C.	ON CENTER
	EXEMPT	R	RADIUS
	EXEMPT	REF. REINF.	REFERENCE REINFORCEMENT
		S.J.	SAWCUT JOINT
	EXEMPT	SCH.	SCHEDULE
	EXEMPT	SIM.	SIMILAR
		SF	SQUARE FEET
		ST.	STAINLESS
		STD.	STANDARD
		STL.	STEEL
		THK.	
		T.J. T/	TOOLED JOINT TOP OF
		TYP.	TYPICAL
		VERT	VERTICAL
		V.I.F.	VERIFY IN FIELD
		WT	WEIGHT
		WWF	WELDED WIRE FABRIC
		W/	WITH
		WF	WIDE ELANGE

TYPICAL ANGLE LINTEL DETAIL

$\[\]$	\top	
	\perp	
Article 145 acting under professiona an item in ar an archit altered; the surveyor s notation "al and date	ation of New York Educ 5 Sec.7209, for any per the direction of a licen I engineer, or land surv by way. If an item beari ect, engineer, or land s altering architect, engi shall affix to the item the tered by" followed by th of such alteration, and escription of the alterati	son, unless sed architect, reyor, to alter ng the seal of surveyor is neer, or land eir seal and heir signature a specific
	© 2019 LaBella Associates	
ROCI	HESTER SCH	OOLS
	NIZATION PF	
	1776 N. CLINTON AV ROCHESTER, NY 146	

WIDE FLANGE

WF

RUCHESTER, NY 14621

EDISON TECHNICAL SCHOOL 655 COLFAX STREET

ROCHESTER, NY 14606

SED NO. 26-16-00-01-0-111-032

DWT NO. 26-16-00-01-7-999-020

2170218

ERL

.IMF

BID DOCUMENTS

JUNE 26, 2019

GENERAL STRUCTURAL NOTES

& DESIGN CRITERIA

REVISIONS

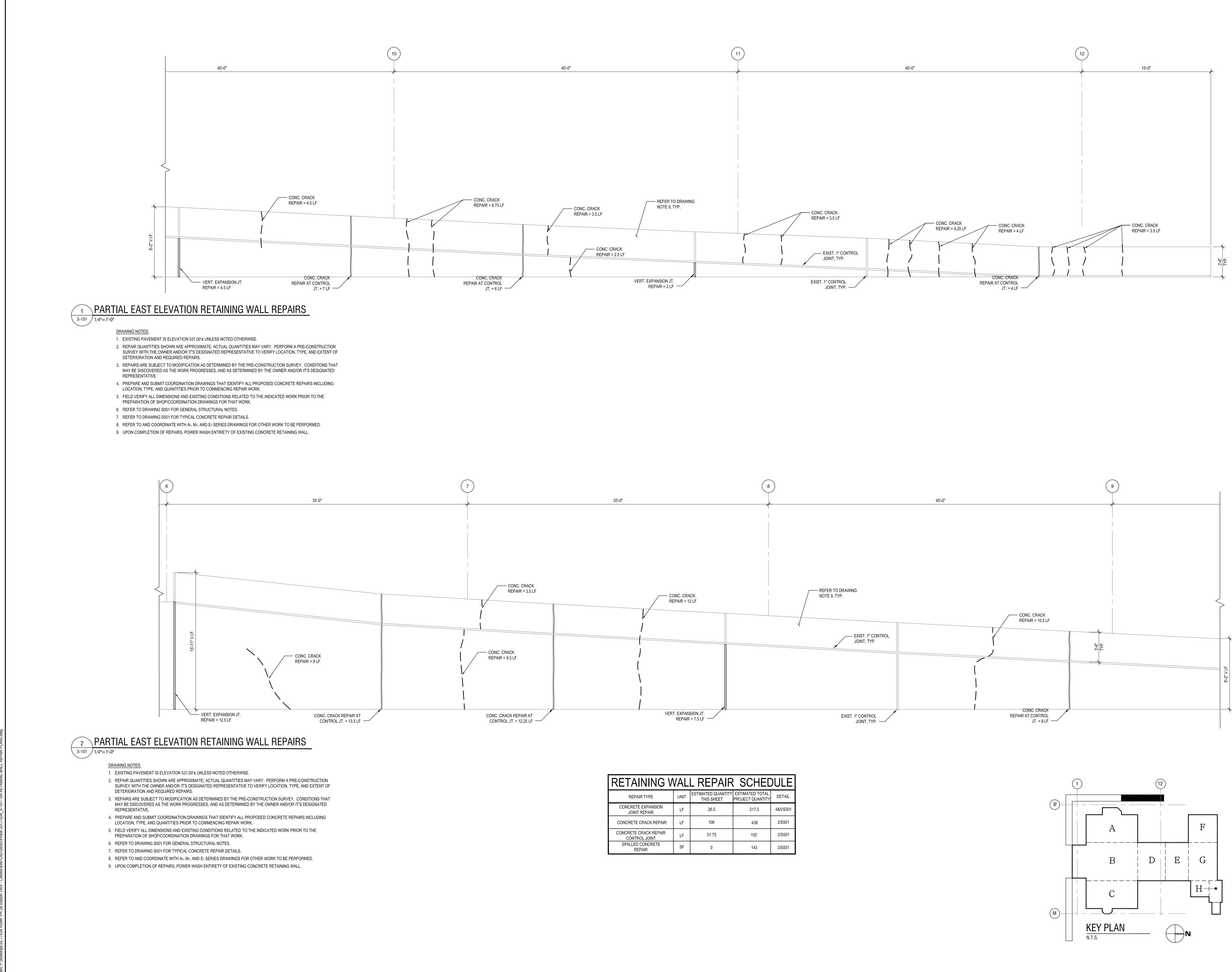
PROJECT NUMBER:

DRAWN BY:

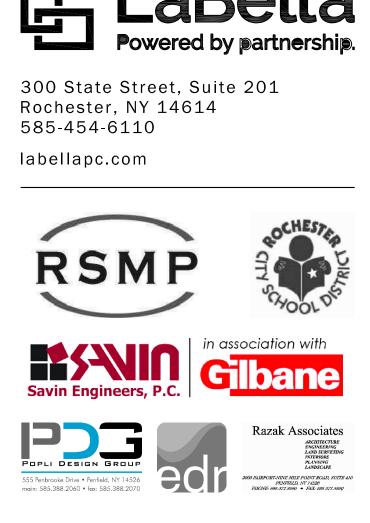
REVIEWED BY:

ISSUED FOR:

DRAWING NAME:


DRAWING NUMBER:

DATE:


NO: DATE: DESCRIPTION:

1 6.28.19 BID ADDENDUM 1

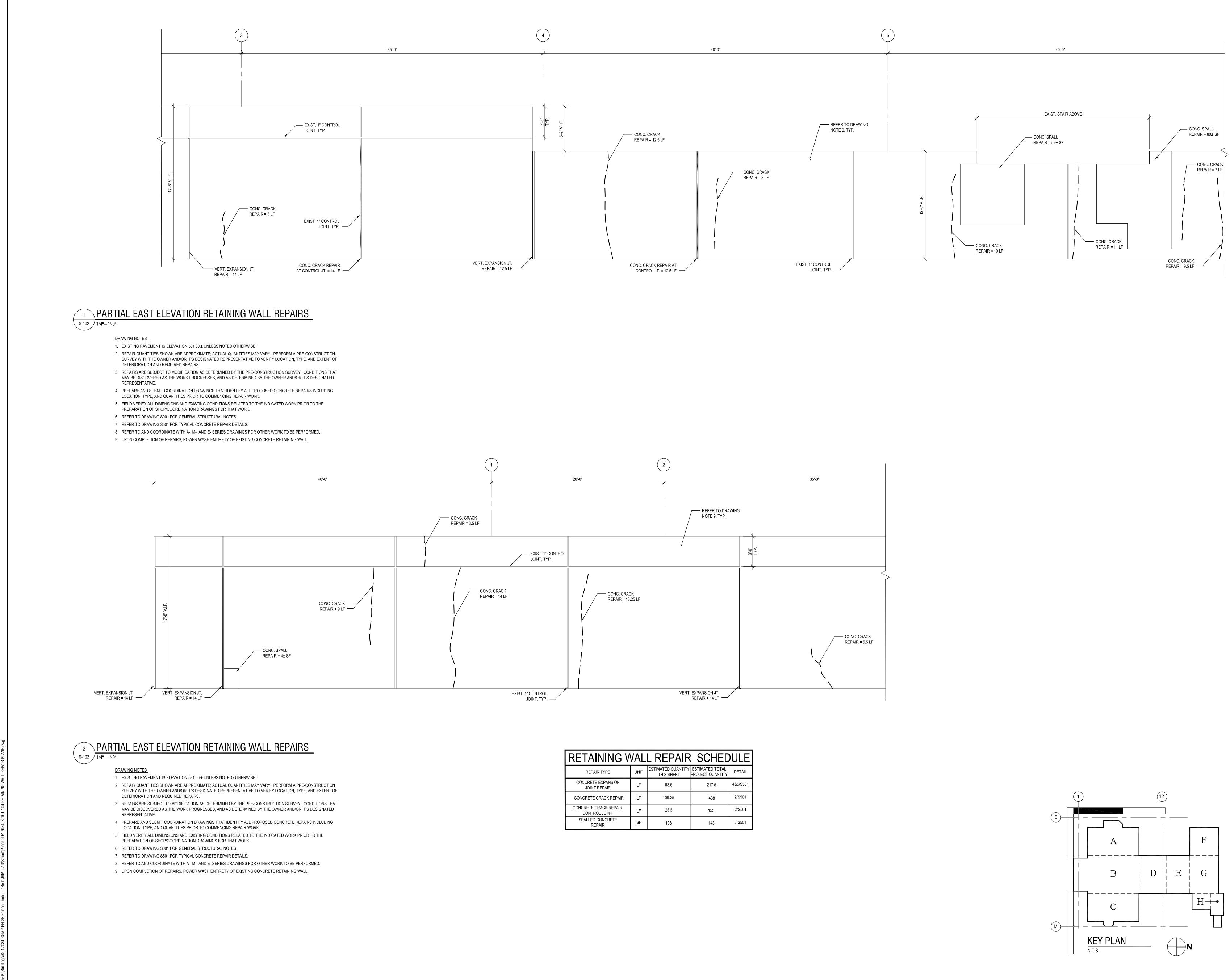
S001

RETAINING WALL REPAIR SCHEDULE					
REPAIR TYPE	UNIT	ESTIMATED QUANTITY THIS SHEET	ESTIMATED TOTAL PROJECT QUANTITY	DETAIL	
CONCRETE EXPANSION JOINT REPAIR	LF	26.5	217.5	4&5/S501	
CONCRETE CRACK REPAIR	LF	106	438	2/S501	
CONCRETE CRACK REPAIR CONTROL JOINT	LF	51.75	155	2/S501	
SPALLED CONCRETE REPAIR	SF	0	143	3/S501	

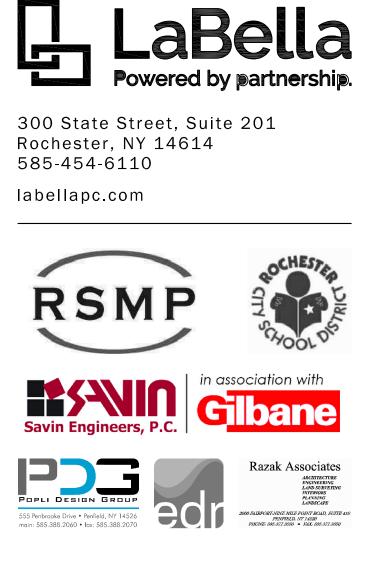
		I		1
Article acting ur professi an item i an ar altered; survey notation	violation of N 145 Sec.720 onder the direct onal engineer n any way. If chitect, engine the altering a vor shall affix "altered by" late of such a description	9, for an tion of a r, or lanc an item neer, or la architect, to the ite followed ilteration	y person, un licensed arc l surveyor, to bearing the s and surveyor engineer, or em their seal by their sign , and a spec	less hitect, alter seal of r is r land and ature
	© 2019 L	.aBella Assoc	ciates	
	CHEST			
MODE	RNIZA	TION	PROG	RAM
	1776 N.			
	ROCHEST	ER, NY	14021	
EDI	SON TEC	HNICA	L SCHOO	L
	655 COL ROCHEST			
SE	D NO 26-16	5-00-01	_0_111_032)

 \top

SED NO. 26-16-00-01-0-111-032 DWT NO. 26-16-00-01-7-999-020


REVISION	IS				
NO:	DATE:	DESCRIPTION:			
1 6.28.19		BID ADDENDUM 1			
PROJECT	NUMBER:				
		2170218			
DRAWN BY: ERL					
REVIEWED	BY:	JMF			
ISSUED FO	ISSUED FOR:				
BID DOCUMENTS					
DATE:					
	JUNE 26, 2019				

DRAWING NAME:


EAST ELEVATION RETAINING WALL REPAIRS

DRAWING NUMBER:

RETAINING WALL REPAIR SCHEDULE					
REPAIR TYPE	UNIT	ESTIMATED QUANTITY THIS SHEET	ESTIMATED TOTAL PROJECT QUANTITY	DETAIL	
CONCRETE EXPANSION JOINT REPAIR	LF	68.5	217.5	4&5/S501	
CONCRETE CRACK REPAIR	LF	109.25	438	2/S501	
CONCRETE CRACK REPAIR CONTROL JOINT	LF	26.5	155	2/S501	
SPALLED CONCRETE REPAIR	SF	136	143	3/S501	

	\top	
	\perp	
Article 1 acting und professior an item in an arch altered; th surveyor notation " and da	iolation of New York E45 Sec.7209, for any p ler the direction of a lic nal engineer, or land su any way. If an item be nitect, engineer, or land ne altering architect, er r shall affix to the item altered by" followed by te of such alteration, a description of the alter	berson, unless ensed architect, urveyor, to alter aring the seal of d surveyor is ngineer, or land their seal and their signature nd a specific
	© 2019 LaBella Associate	

MODERNIZATION PROGRAM 1776 N. CLINTON AVE ROCHESTER, NY 14621

EDISON TECHNICAL SCHOOL 655 COLFAX STREET ROCHESTER, NY 14606

SED NO. 26-16-00-01-0-111-032 DWT NO. 26-16-00-01-7-999-020

REVISION	S	
NO:	DATE:	DESCRIPTION:
1	6.28.19	BID ADDENDUM 1
PROJECT N	NUMBER:	
		2170218
DRAWN BY	/.	ERL
REVIEWED	BY:	JMF
ISSUED FO		
	BI	D DOCUMENTS
DATE:		
	J	UNE 26, 2019

DRAWING NAME:

EAST ELEVATION RETAINING WALL REPAIRS

DRAWING NUMBER:

RETAINING WALL REPAIR SCHEDULE										
REPAIR TYPE	UNIT	ESTIMATED QUANTITY THIS SHEET	ESTIMATED TOTAL PROJECT QUANTITY	DETAIL						
CONCRETE EXPANSION JOINT REPAIR	LF	70	217.5	4&5/S501						
CONCRETE CRACK REPAIR	LF	112.5	438	2/S501						
CONCRETE CRACK REPAIR CONTROL JOINT	LF	44.5	155	2/S501						
SPALLED CONCRETE REPAIR	SF	0	143	3/S501						

DRAWING NUMBER:

NORTH ELEVATION RETAINING WALL REPAIRS

DATE:	JUN
DRAWING NAME:	

REVISIONS

NO: DATE: DESCRIPTION:

1 6.28.19 BID ADDENDUM 1 PROJECT NUMBER: 2170218 DRAWN BY: ERL REVIEWED BY: JMF ISSUED FOR: BID DOCUMENTS JNE 26, 2019

SED NO. 26-16-00-01-0-111-032 DWT NO. 26-16-00-01-7-999-020

655 COLFAX STREET ROCHESTER, NY 14606

EDISON TECHNICAL SCHOOL

1776 N. CLINTON AVE ROCHESTER, NY 14621

It is a violation of New York Education Law an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

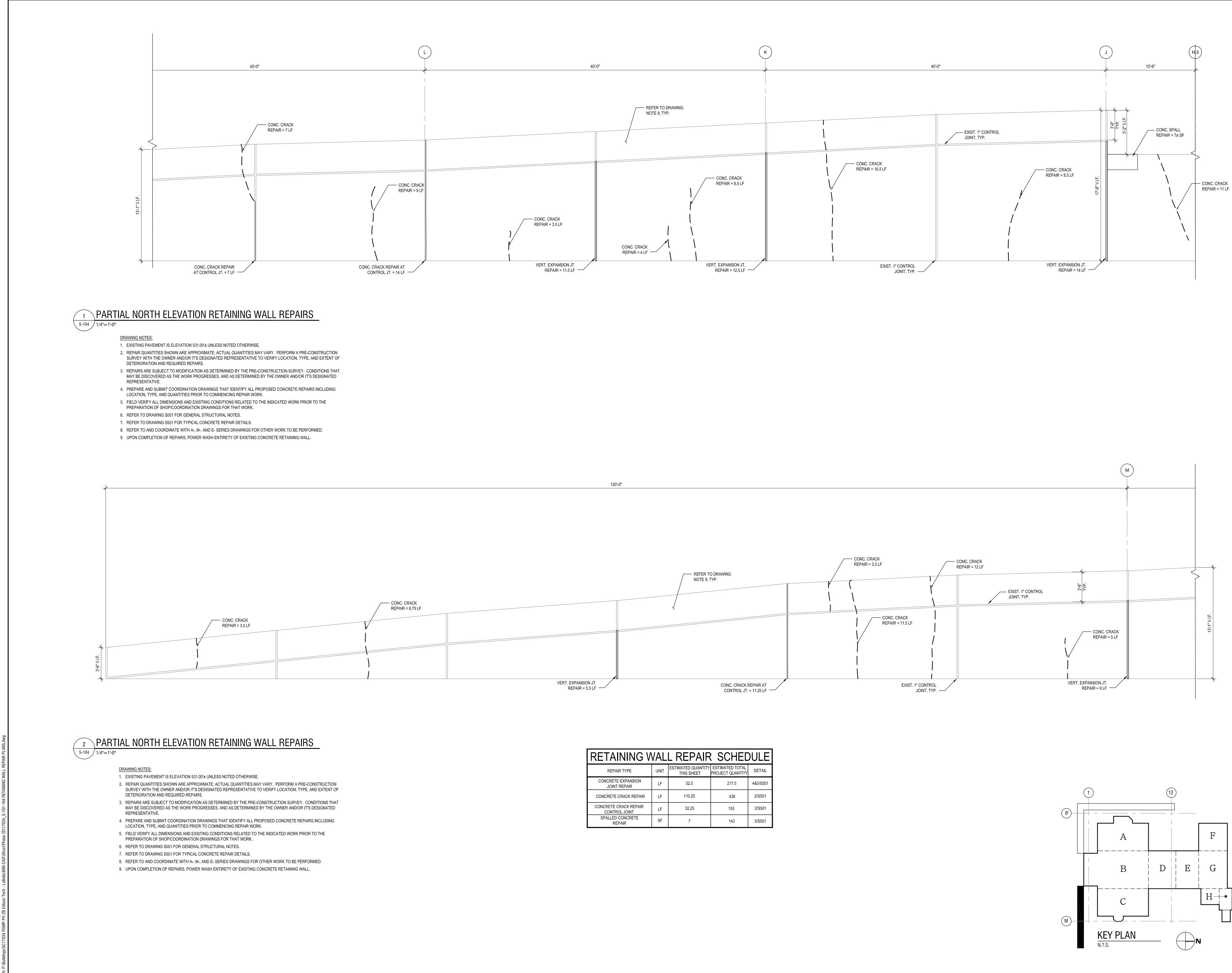
© 2019 LaBella Associates

ROCHESTER SCHOOLS

MODERNIZATION PROGRAM

Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of

2060 FAIRPORT-NINE MILE FOINT ROAD, SUITE PENTIFILD, NY 14520 PHONE: 585.377.3550 • FAX: 585.377.3559 555 Penbrooke Drive • Pentield, NY 14526 main: 585.388.2060 • fax: 585.388.2070


Powered by pa

300 State Street, Suite 201

Rochester, NY 14614

585-454-6110

labellapc.com

RETAINING WALL REPAIR SCHEDULE										
REPAIR TYPE	UNIT	ESTIMATED QUANTITY THIS SHEET	ESTIMATED TOTAL PROJECT QUANTITY	DETAIL						
CONCRETE EXPANSION JOINT REPAIR	LF	52.5	217.5	4&5/S501						
CONCRETE CRACK REPAIR	LF	110.25	438	2/S501						
CONCRETE CRACK REPAIR CONTROL JOINT	LF	32.25	155	2/S501						
SPALLED CONCRETE REPAIR	SF	7	143	3/S501						

DRAWING NUMBER:

DRAWING NAME:

NORTH ELEVATION RETAINING WALL REPAIRS

D	WT NO. 2	6-16-00-01-7-999-020								
REVISION	S									
NO:	DATE:	DESCRIPTION:								
1	6.28.19	BID ADDENDUM 1								
PROJECT	NUMBER:	2170218								
DRAWN BY	/.	ERL								
REVIEWED	REVIEWED BY: JMF									
ISSUED FO	ISSUED FOR: BID DOCUMENTS									
DATE:	DATE: JUNE 26, 2019									

SED NO. 26-16-00-01-0-111-032

655 COLFAX STREET

ROCHESTER, NY 14606

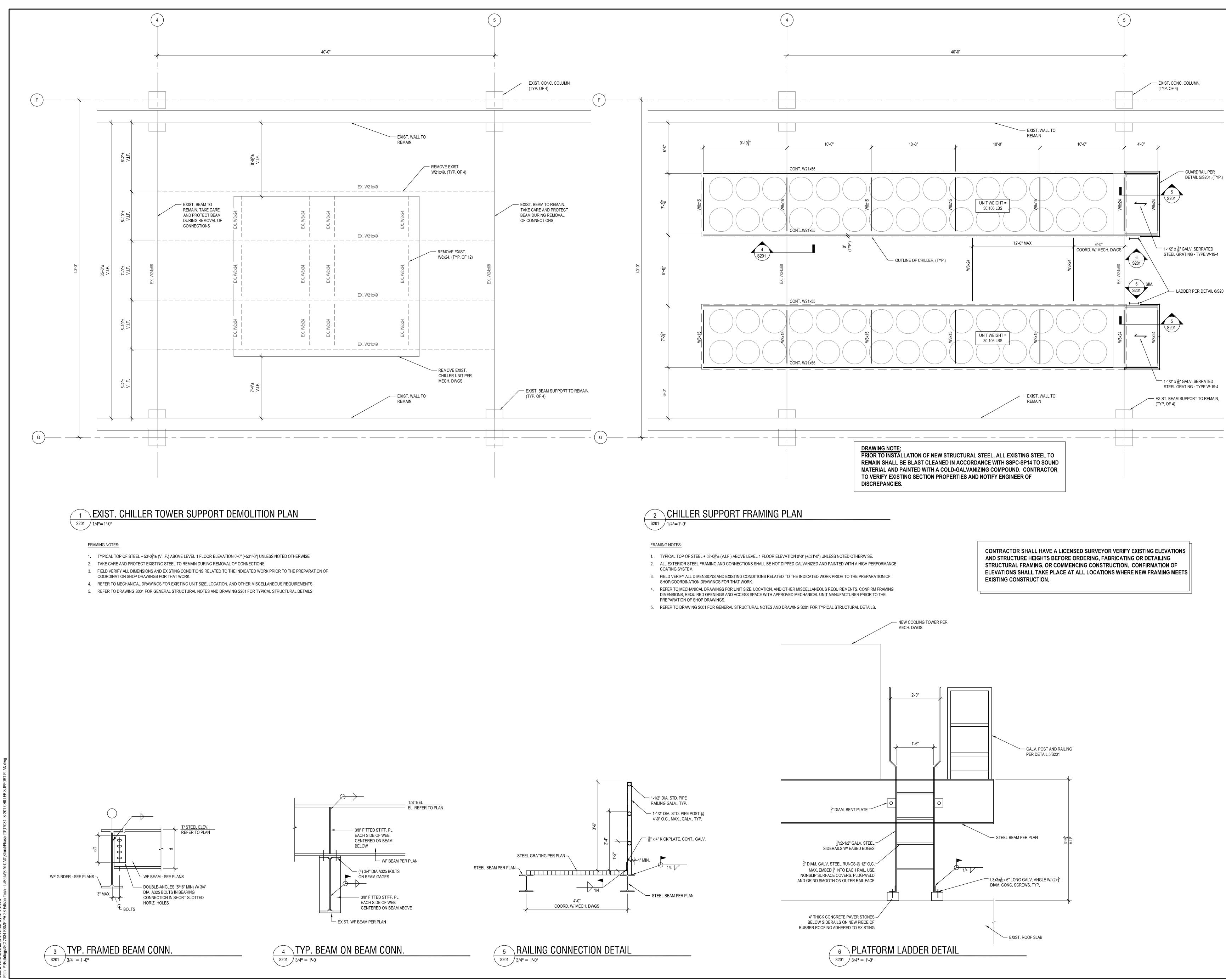
EDISON TECHNICAL SCHOOL

ROCHESTER, NY 14621

© 2019 LaBella Associates **ROCHESTER SCHOOLS MODERNIZATION PROGRAM** 1776 N. CLINTON AVE

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

ak Associates 2000 FAIRPORT-NINE MILE POINT ROAD, SUITH 4. PENTIFILD, NY 14520 PHONE: 685.377.3550 • FAX: 685.377.3559 EOI 555 Penbrooke Drive • Penfield, NY 14526 main: 585.388.2060 • fax: 585.388.2070


labellapc.com RSM in association with

300 State Street, Suite 201

Rochester, NY 14614

585-454-6110

Powered by partnership

DRAWING NUMBER:

DRAWING NAME:

CHILLER SUPPORT DEMOLITION AND FRAMING PLANS

D							
REVISION	S		-				
NO:	DATE:	DESCRIPTION:	-				
1	6.28.19	BID ADDENDUM 1	-				
			-				
			_				
			_				
PROJECT N	IUMBER:						
		2170218					
DRAWN BY	·	ERL	-				
REVIEWED	BY:	JMF					
ISSUED FO		D DOCUMENTS	-				
DATE:	J	UNE 26, 2019	-				

SED NO. 26-16-00-01-0-111-032 DWT NO. 26-16-00-01-7-999-020

655 COLFAX STREET ROCHESTER, NY 14606

EDISON TECHNICAL SCHOOL

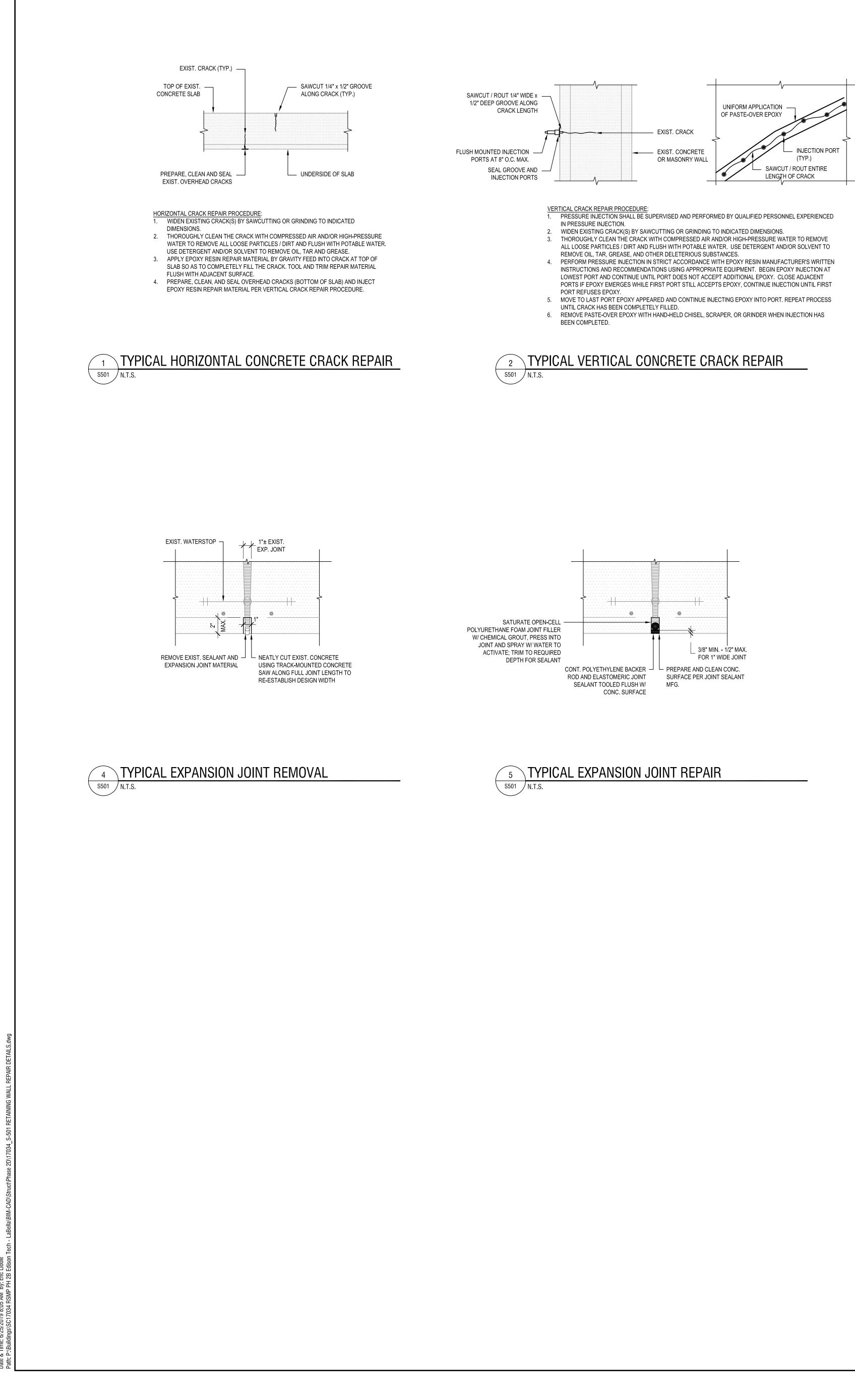
1776 N. CLINTON AVE

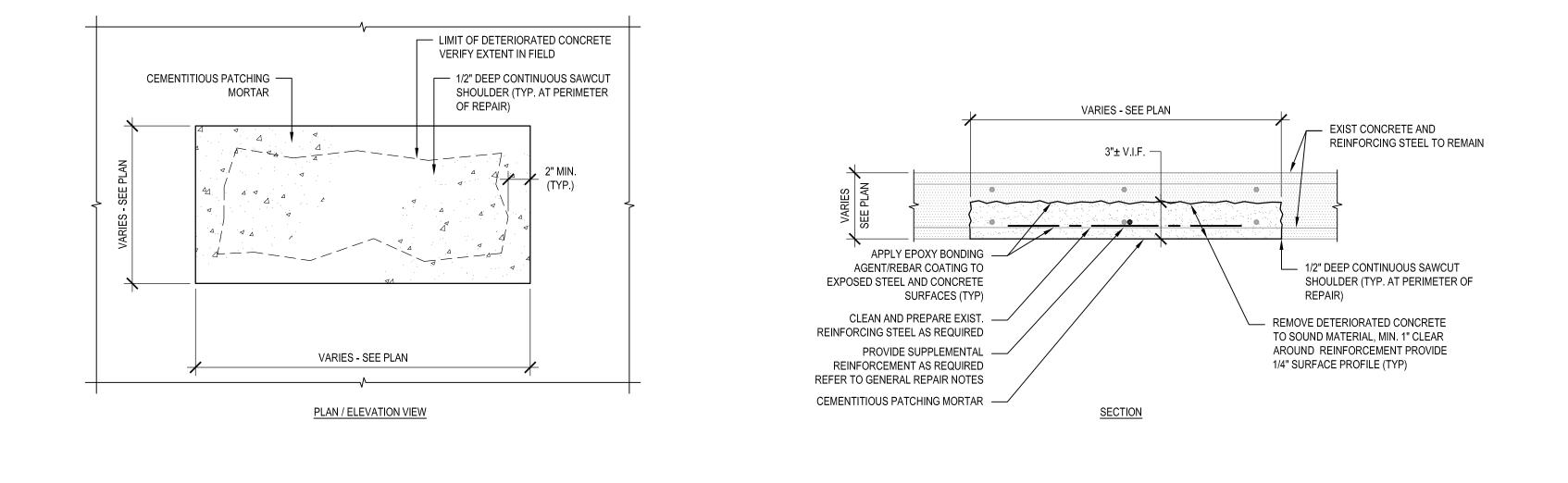
ROCHESTER, NY 14621

and date of such alteration, and a specific description of the alteration. © 2019 LaBella Associates **ROCHESTER SCHOOLS MODERNIZATION PROGRAM**

notation "altered by" followed by their signature

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered, the altering architect, engineer, or land surveyor shall affix to the item their seal and




300 State Street, Suite 201

Rochester, NY 14614

585-454-6110

labellapc.com

I		1		I
Article 14 acting unde profession an item in a an arch altered; th surveyor notation "a and date	5 Sec.720 er the direc al enginee any way. If itect, engir e altering a shall affix iltered by"	9, for any ction of a r, or land an item t neer, or la architect, to the ite followed alteration,	and surveyc engineer, c m their sea by their sign and a spec	nless chitect, o alter seal of or is or land l and nature
	© 2019 L	_aBella Associ	ates	
MODEF		TION CLINTOR	N AVE	
	ON TEC 655 COL ROCHEST	FAX STF)L
-			-0-111-03 -7-999-02	

—

REVISIONS NO: DATE: DESCRIPTION: 1 6.28.19 BID ADDENDUM 1 _____ _____ PROJECT NUMBER: 2170218 DRAWN BY: ERL REVIEWED BY: JMF ISSUED FOR: BID DOCUMENTS DATE: JUNE 26, 2019

DRAWING NAME:

RETAINING WALL REPAIR DETAILS

DRAWING NUMBER:

<u> </u>	LECTRICAL GENERAL NOTES:
A	ELECTRICAL CONTRACTOR SHALL COORDINATE ALL ELECTRICAL DEVICE PLACEMENT AND ELEVATIONS WITH CASEWORK SUPPLIER ANDA ARCHITECT PRIOF TO ROUGH-IN. GENERAL CONTRACTOR SHALL PROVIDE ALL DRILLING AND GROMMETING IN CASEWORK FOR CORD ACCESS IF REQUIRED.
В	COORDINATE LOCATIONS OF ALL RECEPTACLES IN MECHANICAL SPACES WITH HVA CONTRACTOR TO AVOID CONFLICTS WITH EQUIPMENT.
С	COORDINATE LOCATION OF LIGHT FIXTURES IN MECHANICAL SPACES WITH HVAC EQUIPMENT AND DUCT WORK.
D	ALL EXPOSED CONDUIT/J-BOXES NEED TO BE PREPPED FOR PAINTING BY OTHERS.
E	PROVIDE FIRE-PROOFING SEALANT FOR ANY PENETRATIONS THROUGH FIRE-SAFE WALLS.
E	<u>CLOSE-OUT</u> . PROJECT PROVIDE TRAINING FOR APPROPRIATE DISTRICT PERSONNEL. TRAINING WILL REVIEW COMPLETE OPERATIONS AND MAINTENANCE (0&M) MANUAL, INCLUDING BUT NOT LIMITED TO, PROGRAMMING AND SETUP OF ANY CONTROL SYSTEMS, REQUIRED MAINTENANCE, AND TROUBLESHOOTING, INCLUDING CONTACT NAMES AND PHONE NUMBERS FOR FACTORY SUPPORT.
F	OUTAGES. A MINIMUM OF SEVEN CALENDAR DAYS, IN ADVANCE, COORDINATE ALL ELECTRICAL SERVICE OUTAGES WITH THE DISTRICT AND THE POWER COMPANY. CONFIRM OUTAGE TIMES WITH RCSD REPRESENTATIVE, IN ADVANCE, A MINIMUM OF 48 HOURS. PLAN ALL WORK SO THAT THE DURATION OF OUTAGE IS KEPT TO AN ABSOLUTE MINIMUM. PROVIDE TEMPORARY WIRING AS REQUIRED IN ORDER TO MAINTAIN CONTINUOUS SERVICE TO OCCUPIED PORTIONS OF THE BUILDING DURING BUSINESS HOURS.
3	<u>SALVAGE.</u> RCSD HAS FIRST RIGHTS OF SALVAGE FOR EQUIPMENT AND MATERIALS REMOVED DURING CONSTRUCTION. COORDINATE PROJECT SPECIFIC DETAILS WITH THE RCSD REPRESENTATIVE.
E	LECTRICAL GENERAL DEMOLITION NOTES:
	LECTRICAL GENERAL DEMOLITION NOTES: THIS CONTRACTOR SHALL REMOVE ONLY EXISTING ELECTRIC ITEMS IN AREAS OF RENOVATIONS, UNLESS OTHERWISE NOTED, TO ACCOMMODATE THE NEW CONSTRUCTION. REROUTING OF EXISTING MAY BE REQUIRED AT NEW OPENINGS IN EXISTING CONSTRUCTION OR INTERFERENCE WITH OTHER NEW WORK, AS NOTED BELOW.
<u>Ε</u>	THIS CONTRACTOR SHALL REMOVE ONLY EXISTING ELECTRIC ITEMS IN AREAS OF RENOVATIONS, UNLESS OTHERWISE NOTED, TO ACCOMMODATE THE NEW CONSTRUCTION. REROUTING OF EXISTING MAY BE REQUIRED AT NEW OPENINGS IN EXISTING CONSTRUCTION OR INTERFERENCE WITH OTHER
4	THIS CONTRACTOR SHALL REMOVE ONLY EXISTING ELECTRIC ITEMS IN AREAS OF RENOVATIONS, UNLESS OTHERWISE NOTED, TO ACCOMMODATE THE NEW CONSTRUCTION. REROUTING OF EXISTING MAY BE REQUIRED AT NEW OPENINGS IN EXISTING CONSTRUCTION OR INTERFERENCE WITH OTHER NEW WORK, AS NOTED BELOW. DRAWINGS INDICATE SPECIFIC ITEMS TO BE REMOVED AND/OR RELOCATED IN ORDER TO INDICATE GENERAL SCOPE. WIRING & CIRCUITRY ARE NOT SHOW BUT SHALL BE INCLUDED. THE ELECTRICAL CONTRACTOR SHALL REMOVE, RELOCATE, OR REROUTE ADDITIONAL ITEMS NOT INDICATED BUT NECESSARY FOR PROJECT RENOVATIONS. THEREFORE, THE ELECTRICAL CONTRACTOR SHALL ASSUME WITHIN HIS BASE BID A NOMINAL AMOUNT OF UNKNOWN BRANCH CIRCUITS, FIXTURES, DEVICES, AND SYSTEMS WIRING, WITHIN WALLS
 З	THIS CONTRACTOR SHALL REMOVE ONLY EXISTING ELECTRIC ITEMS IN AREAS OF RENOVATIONS, UNLESS OTHERWISE NOTED, TO ACCOMMODATE THE NEW CONSTRUCTION. REROUTING OF EXISTING MAY BE REQUIRED AT NEW OPENINGS IN EXISTING CONSTRUCTION OR INTERFERENCE WITH OTHER NEW WORK, AS NOTED BELOW. DRAWINGS INDICATE SPECIFIC ITEMS TO BE REMOVED AND/OR RELOCATED IN ORDER TO INDICATE GENERAL SCOPE. WIRING & CIRCUITRY ARE NOT SHOW BUT SHALL BE INCLUDED. THE ELECTRICAL CONTRACTOR SHALL REMOVE, RELOCATE, OR REROUTE ADDITIONAL ITEMS NOT INDICATED BUT NECESSARY FOR PROJECT RENOVATIONS. THEREFORE, THE ELECTRICAL CONTRACTOR SHALL ASSUME WITHIN HIS BASE BID A NOMINAL AMOUNT OF UNKNOWN BRANCH CIRCUITS, FIXTURES, DEVICES, AND SYSTEMS WIRING, WITHIN WALLS OR OPENINGS BEING REMOVED OR RELOCATIONS REQUIRED FOR NEW WORK. WHERE DEVICES, FIXTURES, ETC. ARE INDICATED TO BE REMOVED, THEY AND THEIR RELATED WIRING/CONDUIT, ALL SUPPORT SHALL BE REMOVED BACK TO THE SOURCE PANELBOARD. IF CIRCUITS ARE FOUND THAT HAVE OTHER ITEMS ON THEM THAT ARE TO REMAIN, THESE CIRCUITS SHALL REMAIN. MAINTAIN CIRCUIT CONTINUITY TO FEED THRU TO ANY REMAINING DEVICES, FIXTURES, EQUIPMENT, ETC. RELOCATE ANY CIRCUITS THAT ARE TO REMAIN, AS REQUIRED, TO AVOID CONFLICT WITH NEW CONSTRUCTION. PROPERLY
A	THIS CONTRACTOR SHALL REMOVE ONLY EXISTING ELECTRIC ITEMS IN AREAS OF RENOVATIONS, UNLESS OTHERWISE NOTED, TO ACCOMMODATE THE NEW CONSTRUCTION. REROUTING OF EXISTING MAY BE REQUIRED AT NEW OPENINGS IN EXISTING CONSTRUCTION OR INTERFERENCE WITH OTHER NEW WORK, AS NOTED BELOW. DRAWINGS INDICATE SPECIFIC ITEMS TO BE REMOVED AND/OR RELOCATED IN ORDER TO INDICATE GENERAL SCOPE. WIRING & CIRCUITRY ARE NOT SHOW BUT SHALL BE INCLUDED. THE ELECTRICAL CONTRACTOR SHALL REMOVE, RELOCATE, OR REROUTE ADDITIONAL ITEMS NOT INDICATED BUT NECESSARY FOR PROJECT RENOVATIONS. THEREFORE, THE ELECTRICAL CONTRACTOR SHALL ASSUME WITHIN HIS BASE BID A NOMINAL AMOUNT OF UNKNOWN BRANCH CIRCUITS, FIXTURES, DEVICES, AND SYSTEMS WIRING, WITHIN WALLS OR OPENINGS BEING REMOVED OR RELOCATIONS REQUIRED FOR NEW WORK. WHERE DEVICES, FIXTURES, ETC. ARE INDICATED TO BE REMOVED, THEY AND THEIR RELATED WIRING/CONDUIT, ALL SUPPORT SHALL BE REMOVED BACK TO THE SOURCE PANELBOARD. IF CIRCUITS ARE FOUND THAT HAVE OTHER ITEMS ON THEM THAT ARE TO REMAIN, THESE CIRCUITS SHALL REMAIN. MAINTAIN CIRCUIT CONTINUITY TO FEED THRU TO ANY REMAINING DEVICES, FIXTURES, EQUIPMENT, ETC. RELOCATE ANY CIRCUITS THAT ARE TO REMAIN, AS REQUIRED, TO AVOID CONFLICT WITH NEW CONSTRUCTION. PROPERLY TERMINATE ALL WIRING.

ELECTRICAL ARREVIATIONS

ELECTRICAL ABBREVIATIONS				SYMBOL LIST						
AFF	ABOVE FINSIHED FLOOR	SD	SMOKE DAMPER		LIGHTING	POWER				
AFG	ABOVE FINISHED GRADE		SHUNT TRIP		LUMINAIRE, TYPE INDICATED IN CAPITAL LETTER		— – – — LOW VOLTAGE CONTROL WIRING BETWEEN DEVICES			
ATS BLDG.	AUTOMATIC TRANSFER SWITCH BUILDING	SWBD TVSS	SWITCHBOARD TRANSIENT VOLTAGE SURGE SUPPRESSOR		LOWINAIRE, TYPE INDICATED IN CAPITAL LETTER LOWER CASE LETTER INDICATES SWITCHING CIRCUIT REFER TO LUMINAIRE SCHEDULE FOR DESCRIPTION	 SINGLE RECEPTACLE, 2P, 3W, 20AMP, 120VAC. C - INDICATES ABOVE COUNTER. COORDINATE WITH G.C. UC - INDICATES UNDER COUNTER. COORDINATE WITH G.C. 	CONDUIT AND WIRING BELOW GRADE OR FINISHED FLOOR			
C CB	CONDUIT (OR "COVER" WHEN NEXT TO A FIRE ALARM DEVICE) CIRCUIT BREAKER		UNLESS OTHERWISE INDICATED	Опю		WC - INDICATES UNDER COOLER RECEPTACLE. COORDINATE WITH G.C. WC - INDICATES WATER COOLER RECEPTACLE. COORDINATE WITH P.C. V - INDICATES VENDING MACHINE RECEPTACLE	CONDUIT AND WIRING FOR EMERGENCY CIRCUIT. 2 #12 AWG IN 1/2 CONDUIT UNLESS OTHERWISE INDICATED.			
CKT.	CIRCUIT	VFD	VARIABLE FREQUENCY DRIVE	XX	LUMINAIRE CONNECTED TO LOCAL UNSWITCHED	TV - INDICATES TELEVISION/MONITOR OUTLET AT CEILING IG - INDICATES ISOLATED GROUND TYPE	10 HOME RUN TO PANEL. CIRCUIT NUMBER INDICATED			
DISC	DISCONNECT SWITCH	VOIP	VOICE OVER IP		LIGHTING CIRCUIT.	+ xx" INDICATES HEIGHT OF RECEPTACLE ABOVE FINISHED FLOOR EX - INDICATES EXISTING DEVICE				
E.C.	ELECTRICAL SUB CONTRACTOR	W	WIRE	£	EMERGENCY LIGHT	M - INDICATES MICROWAVE RECEPTACLE	$\left\langle \begin{array}{c} LP \end{array} \right\rangle$ PANELBOARD DESIGNATION			
ECB	ENCLOSED CIRCUIT BREAKER	WG	WIRE GUARD (OR "W" IF NEXT TO A FIRE ALARM DEVICE)	Ţ	SITE LIGHTING FIXTURE	P - INDICATES PROJECTOR RECEPTACLE AT CEILING R - INDICATES REFRIGERATOR RECEPTACLE	BRANCH CIRCUIT PANELBOARD, 208Y/120V, 3Ø, 4W			
EMT	ELECTRIC METAL TUBING	WP	EQUIPMENT/MATERIAL TO BE WEATHERPROOF TYPE	•	REFER TO SITE LIGHTING SCHEDULE FOR DESCRIPTION	USB -INDICATES RECEPTACLE WITH USB PORT				
ER ETR	INDICATES REMOVE EXISTING DEVICE AND RELOCATE EXISTING TO REMAIN	WSA	WIRE SIZING AMPS	ΗQ	EXIT LIGHT, WALL MOUNT, DIRECTIONAL ARROWS AS INDICATED ON PLANS	UPLEX RECEPTACLE, GFCI PROTECTED C - INDICATES ABOVE SINK OR COUNTER. COORDINATE WITH G.C.	DISTRIBUTION PANELBOARD , NOMINAL 600V RATING, 3φ, 4W			
EX	EXISTING			\bigotimes	EXIT LIGHT, CEILING MOUNT, DIRECTIONAL ARROWS AS INDICATED ON PLANS	WP - INDICATES WEATHERPROOF COVER +xx" - INDICATES HEIGHT OF RECEPTACLE	EZZZ BRANCH CIRCUIT PANELBOARD, 480Y/277V , 3φ, 4W			
FA	FIRE ALARM		DEMOLITION LEGEND			UUADPLEX RECEPTACLE; 2P, 3W, 20 AMP, 120 VAC, GFCI				
FACP	FIRE ALARM CONTROL PANEL			\$a	SWITCH, TOGGLE, 20 AMP, 120 VAC, SINGLE CIRCUIT a - INDICATES SWITCHING DESIGNATION	FLOOR RECEPTACLE/OUTLET	LIGHTNING PROTECTION			
FAAP	FIRE ALARM ANNUNCIATOR PANEL	г	RECESSED LIGHT FIXTURE	\$ab	SWITCH, TOGGLE, 20 AMP, 120 VAC, TWO CIRCUIT					
G.C.	GENERAL CONTRACTOR	<u></u>		\$L	SWITCH, LOW VOLTAGE		AT O COPPER AIR TERMINAL			
GND, GR	GROUND	\$	DUPLEX RECEPTACLE	\$°	SWITCH, OCCUPANCY SENSING TYPE, SINGLE CIRCUIT	T TRANSFORMER AS SCHEDULED	GROUND ROD CONNECTION			
HP	HORSEPOWER	\$	LIGHT SWITCH	T I O	WATT STOPPER #WS-120 OR EQUAL	M MOTOR RATED SWITCH, 120V, 20A	=			
JB KVA	JUNCTION BOX KILOVOLT AMPERES	÷.	GFCI OUTLET	\$ab	SWITCH, OCCUPANCY SENSING TYPE, TWO CIRCUIT	⁰⊠ MAGNETIC STARTER, NEMA SIZE INDICATED	BOND CONNECTION TO COPPER CABLE			
KVA KW	KILOWATT	₹7	TELEPHONE JACK	LTD	UL924 LOAD TRANSFER DEVICE- PROVIDE LOCAL SWITCHED AND UNSWITCHED	³⁰ DISCONNECT SWITCH, NON-FUSIBLE	BASKET WEAVE COPPER CABLE			
LCP	LIGHTING CONTROL PANEL	۲	SPECIAL PURPOSE OUTLET		CIRCUITRY AS WELL AS UNSWITCHED	SWITCH SIZE INDICATED				
MCA	MINIMUM CIRCUIT AMPACITY	٢	SMOKE DETECTOR		EMERGENCY CIRCUITRY TO DEVICE, TO POWER ALL EMERGENCY FIXTURES IN SPACE	DISCONNECT SWITCH, FUSIBLE FUSE/SWITCH SIZE INDICATED				
MCB			SURFACE MOUNTED LIGHT	_						
MCC MLO	MOTOR CONTROL CENTER MAIN LUGS ONLY		•	CS	OCCUPANCY SENSOR, CEILING MOUNTED PROVIDE POWER PACK AS REQUIRED	NON-FUSIBLE NEMA SIZE INDICATED				
MEO	MOUNTED		BOUNDARY OF DEMOLITION			30 🖂 Combination motor starter, fusible				
MTG	MOUNTING	(K)	KEY PAD (RETURN TO OWNER)			NEMA SIZE /FUSE SIZE INDICATED				
(N)	INDICATES NEW DEVICE	S	ELECTRICAL CONTROL DEVICE			ECB ENCLOSED CIRCUIT BREAKER, 3POLE, RATING 200 INDICATED				
N.C.	NORMALLY CLOSED CONTACT	M	MONITOR			C CONTACTOR, 120VAC, NEMA 1 ENCL.				
N.O.	NORMALLY OPEN CONTACT		POWER PANEL			NUMBER OF POLES AS REQUIRED.				
NIC	NOT IN CONTRACT	[C]>	SECURITY CAMERA (RETURN TO OWNER)			M MANUAL MOTOR STARTER				
NTS OL	NOT TO SCALE OVERLOAD	- <u>(</u>)_	EQUIPMENT CONNECTION			① REVERSE ACTING THERMOSTAT FURNISHED BY MECHANICAL CONTRACTOR: INICTALLATION BY				
φ	PHASE					MECHANICAL CONTRACTOR; INSTALLATION BY ELECTRICAL CONTRACTOR				
P	POLE	EG	HANDICAPPED PUSH BUTTON			FSC FAN SPEED CONTROLLER FURNISHED BY				
RECEP.	RECEPTACLE	6	MAG LOCK (RETURN TO OWNER)			MECHANICAL CONTRACTOR; INSTALLATION BY ELECTRICAL CONTRACTOR				
REL	RELOCATE					PULL BOX				

	BUILDING LUMINAIRE SCHEDULE											
TYPE	DESCRIPTION	LAMPS	LUMENS (MIN)	WATTS (MAX)	CRI (MIN)	CCT	DRIVER	DISTRIBUTION	MOUNTING	MT. HEIGHT	DESIGN BASE	REMARKS
A	2X2 RECESSED DIRECT/INDIRECT	WHITE LED	2,500	20.2	80	4000	UNV	-	RECESSED	-		CURVED SHIELDING, 0-10V DIMMING DRIVER EXCEPT IN RESTROOMS AND CORRIDORS
В	4 FT LENSED LED STRIPLIGHT	WHITE LED	3,805	30.6	80	4000	UNV	-	SUSPENDED	10'	METALUX: SNLED LENSED	LENSED, Y TOGGLE ACCESSORY

	SITE LUMINAIRE SCHEDULE											POLE																			
PE NO.		AMP TYPE	DESIGN BASE	MIN. LUMEN OUTPUT	WATTS (MAX)	DESCRIPTION	FINISH	CRI	ARRANGEMENT	ACCESSORIES	DESCRIPTION	HEIGHT	MFR/CATALOG #																		
		LED	MC GRAW EDISON-GLEON AF-02 SERIES	12,050	110	EXTRUDED ALUMINUM LED AREA LUMINAIRE, FULL CUTOFF MAST ARM MOUNT, TYPE IV WIDE THROW, IP 66 RATED, DLC LISTED, LM79/LM80 COMPLIANT	Dark Bronze to Match South Lot Luminaires	80	SINGLE	PHOTOCELL		25 FT																			
3 -		LED	MC GRAW EDISON-GLEON AF-03 SERIES	18,000	166	EXTRUDED ALUMINUM LED AREA LUMINAIRE, FULL CUTOFF MAST ARM MOUNT, TYPE IV WIDE THROW, IP 66 RATED,DLC LISTED, LM79/LM80 COMPLIANT	Dark Bronze to Match South Lot Luminaires	80	SINGLE	PHOTOCELL	4" SQUARE,STRAIGHT, ALUMINUM, FINISH TO MATCH HEAD 12	-					_	_	_											25 FT	
-		LED	MC GRAW EDISON-GLEON AF-02 SERIES	12,200	113	EXTRUDED ALUMINUM LED AREA LUMINAIRE, FULL CUTOFF MAST ARM MOUNT, TYPE IV FORWARD THROW, IP 66 RATED, DLC LISTED, LM79/LM80 COMPLIANT	Dark Bronze to Match South Lot Luminaires	80	SINGLE	PHOTOCELL												20 FT									
-		LED	MC GRAW EDISON-GLEON AF-01 SERIES	6,300	59	FIELD ADJUSTABLE EXTRUDED ALUMINUM LED AREA LUMINAIRE, TYPE IV WIDE THROW, IP 66 RATED, LM79/LM80 COMPLIANT	Dark Bronze to Match South Lot Luminaires	80	SINGLE	PHOTOCELL		15 FT	STREETWORKS SSA																		
-		LED	MC GRAW EDISON-GLEON AF-01 SERIES	6,300	59	FIELD ADJUSTABLE EXTRUDED ALUMINUM LED AREA LUMINAIRE, TYPE IV WIDE THROW, IP 66 RATED, LM79/LM80 COMPLIANT	Dark Bronze to Match South Lot Luminaires	80	SINGLE	PHOTOCELL		12FT																			
-		LED	MC GRAW EDISON-GLEON AF-01 SERIES	6,300	59	FIELD ADJUSTABLE EXTRUDED ALUMINUM LED AREA LUMINAIRE, TYPE IV WIDE THROW, IP 66 RATED, LM79/LM80 COMPLIANT	dark bronze to Match South Lot Luminaires	80	SINGLE	PHOTOCELL		20FT																			
-		LED	MC GRAW EDISON-GLEON AF-02 SERIES	12,050	113	FIELD ADJUSTABLE EXTRUDED ALUMINUM LED AREA LUMINAIRE, TYPE IV WIDE THROW, IP 66 RATED, LM79/LM80 COMPLIANT	Dark Bronze to Match South Lot Luminaires	80	SINGLE	PHOTOCELL		20FT																			
-		LED	MC GRAW EDISON-GLEON AF-02 SERIES	12,050	113	FIELD ADJUSTABLE EXTRUDED ALUMINUM LED AREA LUMINAIRE, TYPE IV WIDE THROW, IP 66 RATED, LM79/LM80 COMPLIANT	Dark Bronze to Match South Lot Luminaires	80	SINGLE	PHOTOCELL		15FT																			

 LUMINAIRES TO BE CONTROLLED BY EXISTING BUILDING TIME CLOCK (IN LOADING DOCK) AND OVERRIDE BY INTEGRAL PHOTOSENSING DEVICE SPECIFIED. PROVIDE ONLY (1) PHOTOCELL PER CIRCUIT).
 POLE HEIGHTS ARE BASIS OF DESIGN. WHERE REUSING EXISTING POLE BASES, EXISTING POLE HEIGHT MUST BE MATCH. 3. WHERE EXISTING CIRCUITING IS TO BE REUSED, LUMINAIRES MUST BE ORDERED TO MATCH EXISTING VOLTAGE, PHASING AND CONFIGURATION.

						EQU	IPMENT	CONNECTION	SCHEDULE				
LABEL	DESCRIPTION	LOCATION	LOAD	FLA	VOLTS, PHASE	FEED	CIRCUIT BREAKER	WIRE & CONDUIT	CONTROLLER TYPE	CONTROLLER SIZE	CONTROLLER ACCESSORIES	DISCONNECT	REMARKS
DH-1	DEHUMIDIFIER	POOL EQUIPMENT ROOM	2 HP	23.3	480V, 3PH	LP-014, CKT#22,24,26	30A-3P	3#10 AWG AND (1) #10 GND IN 3/4" C	PROVIDED WITH UNIT	N/A	N/A	PROVIDED WITH UNIT	PROVIDE NEW WIRING/CIRCUITING, CIRCUIT BREAKER FOR SIEMENS PANEL, VFD AND DISCONNECT.
P-DH-1	DEHUMIDIFIER PUMP	POOL EQUIPMENT ROOM	3/4 HP	1.6	480V, 3PH	LP-014,CKT#1,3,5	15A-3P	3#12 AWG AND (1) #12 GND IN 3/4" C	PROVIDED WITH UNIT	N/A	N/A	15A	PROVIDE NEW WIRING/CIRCUITING, CIRCUIT BREAKER FOR SIEMENS PANEL, VFD AND DISCONNECT.
012-47P	PUMP	POOL EQUIPMENT ROOM	1/2 HP	1.1	480V, 3PH	MCC 014	15A-3P	3#12 AWG AND (1) #12 GND IN 3/4" C	PROVIDED WITH UNIT	N/A	N/A	15A	PROVIDE NEW WIRING, DISCONNECT AND SQUARE D OVERCURRENT PROTECTION IN MCC014. PROVIDE ELECTRICAL CONNECTION TO CONTROLLER SUPPLIED BY OTHERS.
014-46P	PUMP	POOL EQUIPMENT ROOM	3/4 HP	1.6	480V, 3PH	MCC 014	15A-3P	3#12 AWG AND (1) #12 GND IN 3/4" C	PROVIDED WITH UNIT	N/A	N/A	15A	PROVIDE NEW WIRING, DISCONNECT AND SQUARE D OVERCURRENT PROTECTION IN MCC014. PROVIDE ELECTRICAL CONNECTION TO CONTROLLER SUPPLIED BY OTHERS.
EF-1	EXHAUST FAN	MECHANICAL ROOM	5 HP	7.6	480V, 3PH	LP-08, CKT #8,10,12	15A-3P	3#12 AWG AND (1) #12 GND IN 3/4" C	PROVIDE ABB VFD	N/A	N/A	15A	REUSE EXISTING WIRING/CIRCUITING BUT PROVIDE NEW CIRCUIT BREAKER FOR SQUARE D PANEL, VFD AND DISCONNECT.
EF-3-37	EXHAUST FAN	PENTHOUSE 3	2 HP	3.4	480V, 3PH	MCC 43	15A-3P	3#12 AWG AND (1) #12 GND IN 3/4" C	PROVIDED WITH UNIT	N/A	N/A	15A	PROVIDE NEW WIRING, DISCONNECT AND SQUARE D OVERCURRENT PROTECTION IN MCC 43. PROVIDE ELECTRICAL CONNECTION TO CONTROLLER SUPPLIED BY OTHERS.
CWP-3	CHILLER PUMP	MECHANICAL ROOM	40 HP	52	480V, 3PH	LP-09, CKT #1,3,5	90A-3P	3#4 AWG AND (1) #8 GND IN 1 1/4" C	PROVIDE ABB VFD	N/A	N/A	100A	PROVIDE NEW WIRING/CIRCUITING, CIRCUIT BREAKER FOR SQUARE D PANEL, VFD AND DISCONNECT.
CWP-4	CHILLER PUMP	MECHANICAL ROOM	40 HP	52	480V, 3PH	LP-09, CKT #7,9,11	90A-3P	3#4 AWG AND (1) #8 GND IN 1 1/4" C	PROVIDE ABB VFD	N/A	N/A	100A	PROVIDE NEW WIRING/CIRCUITING, CIRCUIT BREAKER FOR SQUARE D PANEL, VFD AND DISCONNECT.
CWP-5	CHILLER PUMP	MECHANICAL ROOM	40 HP	52	480V, 3PH	LP-10, CKT# 32,34,36	90A-3P	3#4 AWG AND (1) #8 GND IN 1 1/4" C	PROVIDE ABB VFD	N/A	N/A	100A	PROVIDE NEW WIRING/CIRCUITING, CIRCUIT BREAKER FOR SQUARE D PANEL, VFD AND DISCONNECT.
AHU-E-35	AIR HANDLING UNIT	MECHANICAL ROOM	5 HP	6.6	480V, 3PH	MCC 08	15A-3P	3#12 AWG AND (1) #12 GND IN 3/4" C	PROVIDED WITH UNIT	N/A	N/A	15A	PROVIDE NEW WIRING, DISCONNECT AND SQUARE D OVERCURRENT PROTECTION IN MCC 08. PROVIDE ELECTRICAL CONNECTION TO CONTROLLER SUPPLIED BY OTHERS.
AHU-5-31	AIR HANDLING UNIT	PENTHOUSE 5	10 HP	50	480V, 3PH	MCC 45	60A-3P	3#6 AWG AND (1) #10 GND IN 1" C	PROVIDED WITH UNIT	N/A	N/A	PROVIDED WITH UNIT	PROVIDE AN ADDITIONAL 120V/1PH,20A CIRCUIT FROM AVAILABLE SPARES IN NEAREST PANELBOARD. PROVIDE NEW WIRING AND SQUARE D OVERCURRENT PROTECTION IN MCC 45. PROVIDE ELECTRICAL CONNECTION TO CONTROLLER AND DISCONNECT SUPPLIED BY OTHERS.
AHU-1-6	AIR HANDLING UNIT	PENTHOUSE 1	10 HP	54	480V, 3PH	MCC 41	60A-3P	3#6 AWG AND (1) #10 GND IN 1" C	PROVIDED WITH UNIT	N/A	N/A	PROVIDED WITH UNIT	PROVIDE NEW WIRING/CIRCUITING AND SQUARE D OVERCURRENT PROTECTION IN MCC 41. PROVIDE ELECTRICAL CONNECTION TO CONTROLLER AND DISCONNECT SUPPLIED BY OTHERS.PROVIDE AN ADDITIONAL 120V/1PH,20A CIRCUIT FROM AVAILABLE SPARES IN NEAREST PANELBOARD.
ACC-1	AIR COOLED CHILLER	ROOF	-	1098	480V, 3PH	MAIN SWITCHGEAR	1200A-3P	(3) SETS OF 500KCMILAND (1) 3/0 IN 4" C	PROVIDED WITH UNIT	N/A	N/A	PROVIDED WITH UNIT	PROVIDE NEW WIRING AND SIEMENS BPS SWITCH IN MAINSWITCHGEAR. PROVIDE ELECTRICAL CONNECTION TO CONTROLLER AND DISCONNECT SUPPLIED BY OTHERS. REFER TO ELECTRICAL SITE PLAN FOR MAIN SWITCHGEAR LOCATION.
ACC-2	AIR COOLED CHILLER	ROOF	-	1098	480V, 3PH	MAIN SWITCHGEAR	1200A-3P	(3) SETS OF 500KCMILAND (1) 3/0 IN 4" C	PROVIDED WITH UNIT	N/A	N/A	PROVIDED WITH UNIT	PROVIDE NEW WIRING AND SIEMENS BPS SWITCH IN MAINSWITCHGEAR. PROVIDE ELECTRICAL CONNECTION TO CONTROLLER AND DISCONNECT SUPPLIED BY OTHERS.REFER TO ELECTRICAL SITE PLAN FOR MAIN SWITCHGEAR LOCATION.
ACC-3	AIR COOLED CHILLER	ROOF	-	105	480V, 3PH	MCC 42	125A-3P	3#2 AWG AND (1) #6 GND IN 1 1/2" C	PROVIDED WITH UNIT	N/A	N/A	PROVIDED WITH UNIT	PROVIDE NEW WIRING AND SQUARE D OVERCURRENT PROTECTION IN MCC 42. PROVIDE ELECTRICAL CONNECTION TO CONTROLLER AND DISCONNECT SUPPLIED BY OTHERS.
CWP-1	CHILLER PUMP	PENTHOUSE 1	20 HP	27	480V, 3PH	MCC 41	60A-3P	3#6 AWG AND (1) #10 GND IN 1" C	PROVIDE ABB VFD	N/A	N/A	30A	PROVIDE NEW WIRING, DISCONNECT, CONTROLLER AND SQUARE D OVERCURRENT PROTECTION IN MCC 41.
CWP-2	CHILLER PUMP	PENTHOUSE 1	20 HP	27	480V, 3PH	MCC 41	60A-3P	3#6 AWG AND (1) #10 GND IN 1" C	PROVIDE ABB VFD	N/A	N/A	30A	PROVIDE NEW WIRING, DISCONNECT, CONTROLLER AND SQUARE D OVERCURRENT PROTECTION IN MCC 41.

FIRE ALARM

HEAT DETECTOR, ADDRESSABLE

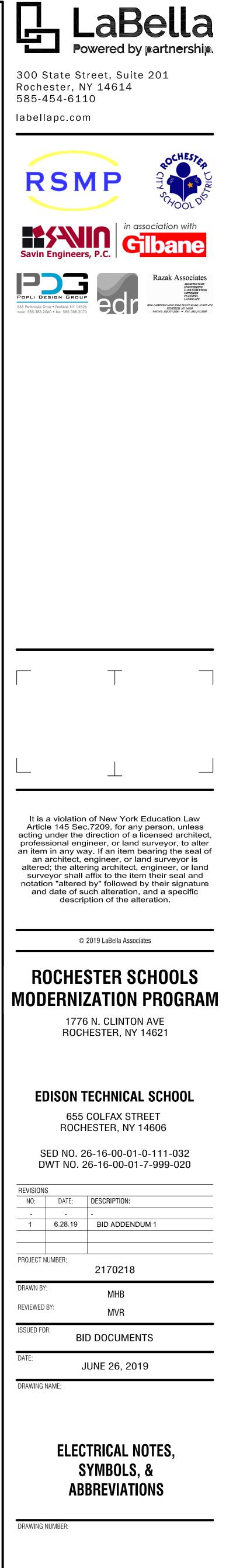
O BASE HEAT DETECTOR, ADDRESSABLE

SMOKE DETECTOR, ADDRESSABLE

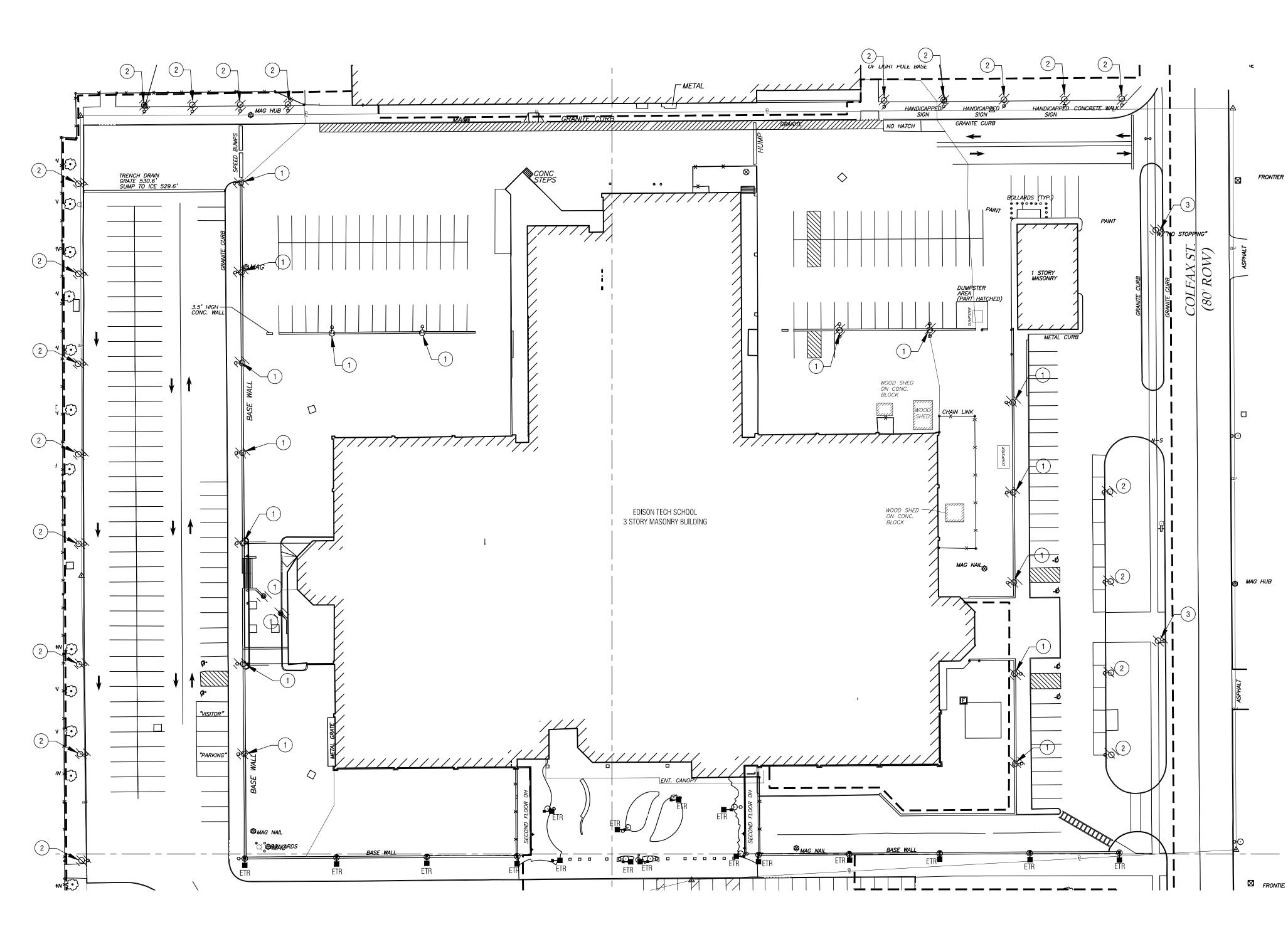
SMOKE DETECTOR, ADDRESSABLE, DUCT TYPE, MECHANICAL UNIT INDICATED

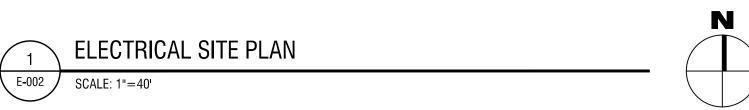
SMOKE DETECTOR ALSO FOR SMOKE DAMPER OPERATION, ADDRESSABLE

CO CO BASED SMOKE DETECTOR, ADDRESSABLE


HET FIRE ALARM STROBE UNIT, WALL MOUNTED STROBE CANDELA INDICATED

COMBINATION FIRE ALARM HORN/STROBE UNIT, STROBE CANDELA INDICATED


FSR FAN SHUTDOWN RELAY


SD FIRE SMOKE DAMPER RELAY

LOCA ^T RATIN	n Base: Square D or approved equal Tion: Loading Dock G: Amps 225 Amp MLO					PANEL SCHEDULE					S.C. RATING: 14,000 Amps RN SERVICE: 277/480V, 3Ø, 4W MOUNTING: SURFACE FEED: EXISTING	MS SYM.
CKT.	LOAD DESIGNATION	LOAD (kVA)	WIRE SIZE	BRE/ TRIP	AKER POLE	PHASE A B C	BRE POLE	AKER TRIP	WIRE SIZE	LOAD (kVA)	LOAD DESIGNATION	СКТ.
1					-	•					SPACE	2
3	EXISTING LOAD				-		-				SPACE	4
5					-	+ + +	+				SPACE	6
7	EXISTING LOAD				-	•	+				EXISTING LOAD	8
9	EXISTING LOAD				-		+				EXISTING LOAD	10
11	SPACE				-	•	-				EXISTING LOAD	12
13	SPACE				-	•	+				EXISTING LOAD	14
15	EXISTING LOAD				\sim		+				EXISTING LOAD	16
17	EXISTING LOAD				-	+ + +	+				EXISTING LOAD	18
19	EXISTING LOAD				-	•	-				EXISTING LOAD	20
21	SPACE				\sim		+				EXISTING LOAD	22
23	SPACE				-	•	-				EXISTING LOAD	24
25	EXISTING LOAD				-	•	-				SPACE	26
27	EXISTING LOAD				-		-				EXISTING LOAD	28
29	EXISTING LOAD				-	•	-				EXISTING LOAD	30
31	EXISTING LOAD				<u> </u>	• •	-				EXISTING LOAD	32
33	SPACE				-	• • •	-				EXISTING LOAD	34
35	SPACE										SPACE	36
37			#10AWG		<u> </u>				#10 AWG			38
39	WEST P LOT LTG		#10AWG	20				20	#10 AWG		EAST PLOT	40
41			#10AWG						#10 AWG			42

E000

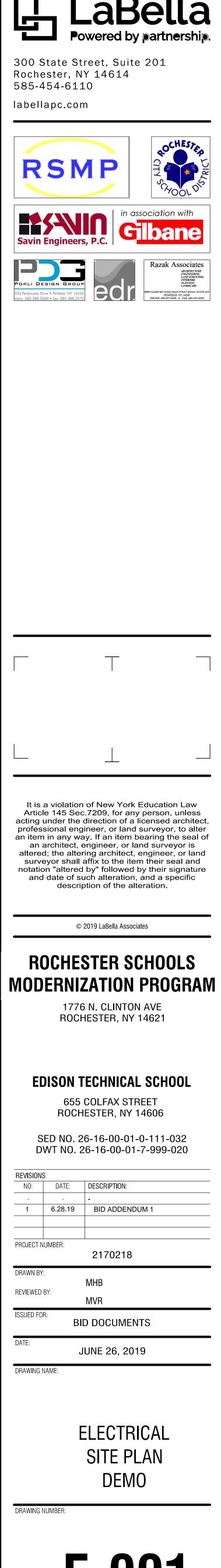
LEGEND:

----- UNDERGROUND OR SURFACE CONDUIT

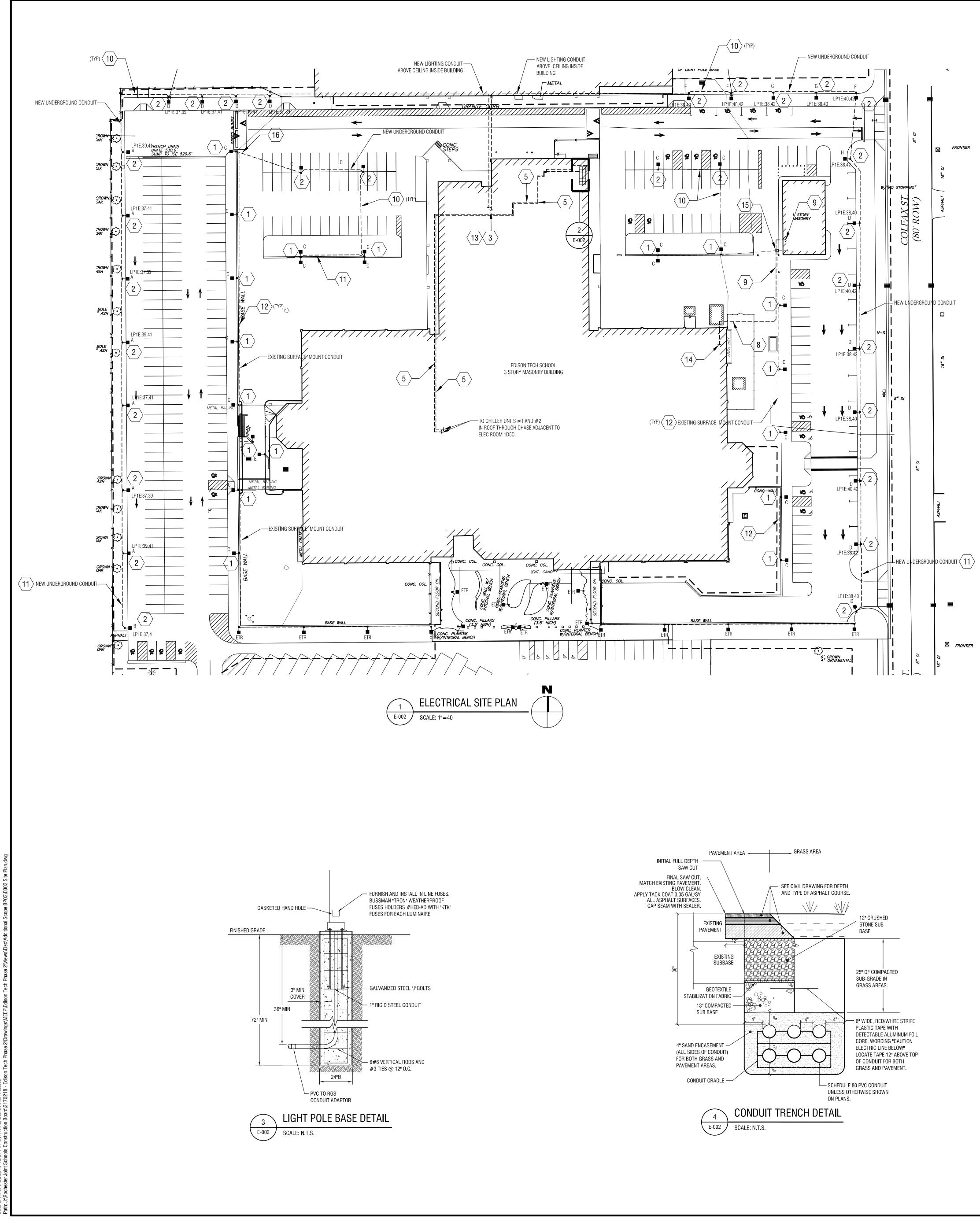
- E ELECTRICAL HAND HOLE
- JUNCTION BOX
- NEW LIGHT POLE
- ♀ EXISTING LIGHT POLE
- SURFACE MOUNT PANELBOARD
- AWG AMERICAN WIRE GAUGE CKT CIRCUIT
- ETR EXISTING TO REMAIN GND GROUND

FRONTIER

ELECTRIC GENERAL NOTES:


- 1. WHERE FIXTURES ARE INDICATED TO BE REMOVED, THEY AND THEIR RELATED WIRING/CONDUIT SHALL BE REMOVED BACK TO THE SOURCE PANEL BOARD. IF CIRCUITS ARE FOUND TO HAVE OTHER LOADS ON THEM THAT ARE TO REMAIN, THESE CIRCUIT SHALL REMAIN. MAINTAIN CIRCUIT CONTINUITY TO FEED THRU TO ANY REMAINING LOADS. PROPERLY TERMINATE ALL WIRING.
- 2. FIELD VERIFY EXISTING CIRCUITING WITH OWNER.
- 3. PROVIDE SCHEDULE 40 PVC FOR UNDERGROUND CONDUITS. TRANSITION TO GALVANIZED STEEL RMC AT EXTERIOR WALL PENETRATIONS.
- 4. EXISTING CONDUITS MAY BE REUSED WHERE POSSIBLE.
- 5. UNDERGROUND CONDUITS SHALL BE A MINIMUM OF 30" BELOW FINISH GRADE.
- 6. TRANSFER TO ABOVE GRADE WITH GALVANIZED STEEL RMC PRIOR TO PENETRATING THE BUILDING.
- 7. VISIT THE SITE TO DETERMINE THE EXACT EXTENT OF ELECTRICAL DEMOLITION WORK REQUIRED TO COMPLETE THE NEW CONSTRUCTION. EXISTING CONDITIONS ARE TAKEN FROM FIELD OBSERVATION AND EXISTING BUILDING CONSTRUCTION DOCUMENTS. OTHER ITEMS MAY EXIST.
- 8. ALL LIGHTING CIRCUITS ARE TO BE MAINTAINED FOR REUSE. 9. PROVIDE NEW PANEL LOAD SCHEDULES FOR ALL PANELS, BOTH EXISTING AND NEW. ALL EXISTING LOADS SHALL BE TRACED AND

CONFIRMED IN THE FIELD.


10. PAINT PULL BOXES TO MATCH WALL AND CEILINGS IF LOCATED IN FINISHED AREA, EXPOSED TO VIEW.

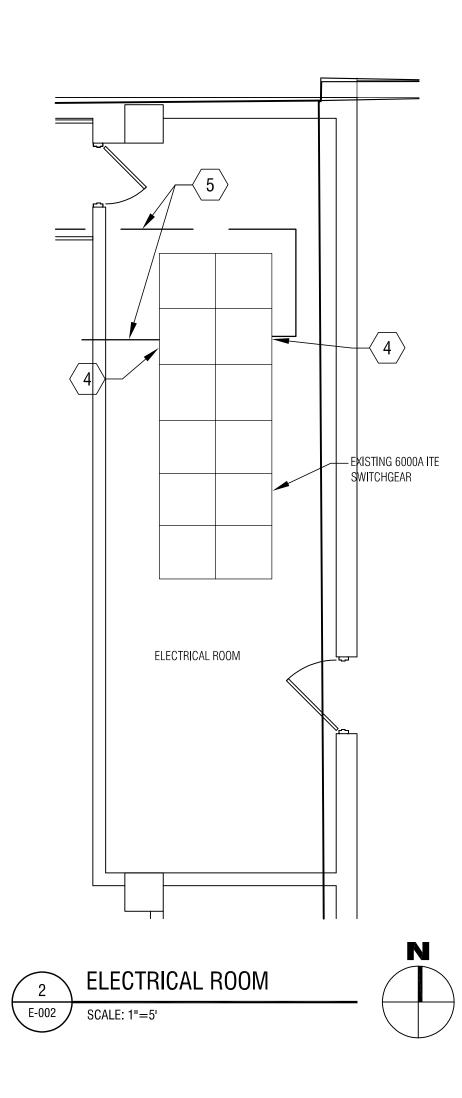
ELECTRIC GENERAL DEMOLITION NOTES:

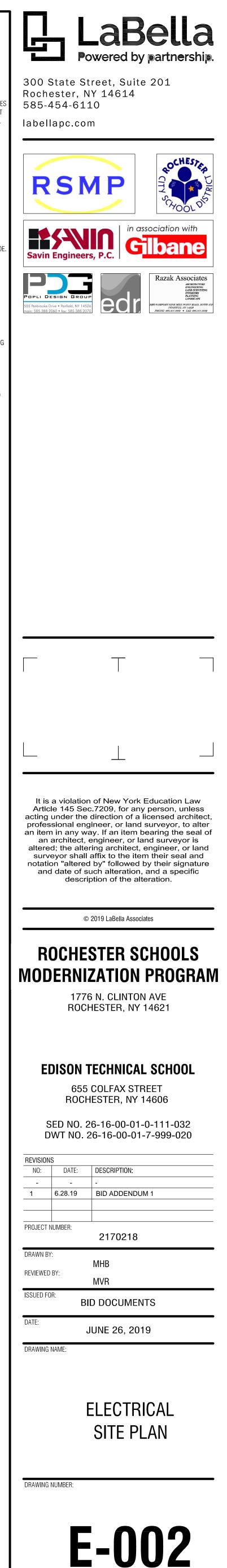
- 1 REMOVE POLE, FIXTURE HEAD AND WIRING BACK TO SOURCE, EXISTING CONCRETE BASE TO BE REUSED IF BASE BOLTS ARE FOUND IN GOOD CONDITION AFTER COVER REMOVAL AND INSPECTION. EXISTING WALL MOUNT CONDUIT TO BE REUSED FOR NEW CONDUIT.
- (2) REMOVE LIGHT POLE, CONCRETE BASE, FIXTURE HEAD, CONDUIT AND WIRING BACK TO SOURCE.
- 3 DISCONNECT AND REMOVE STREET LIGHT POLES. COORDINATE WITCH CITY OF ROCHESTER AND RGE.

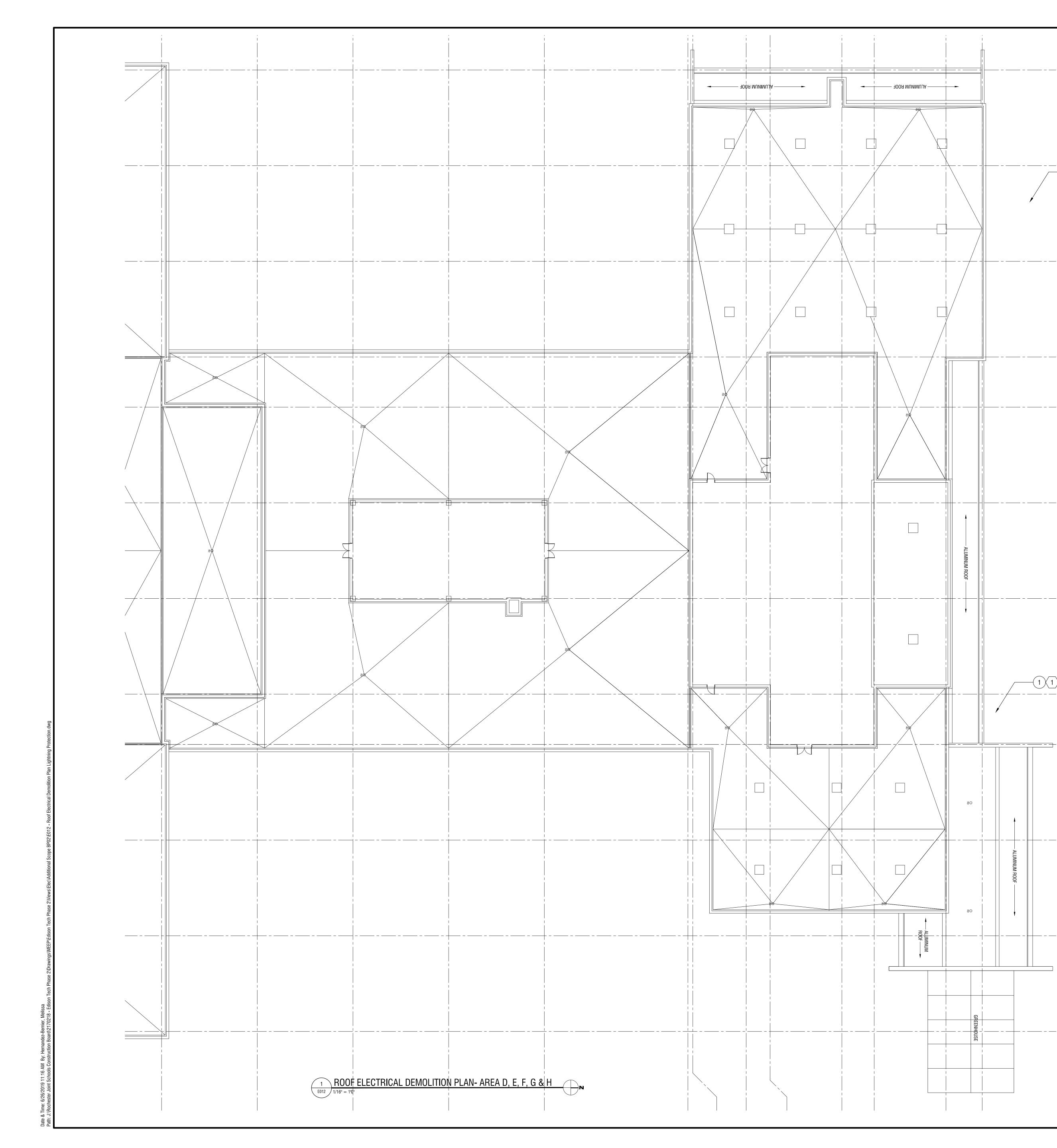
E-001

LEGEND:

- ----- UNDERGROUND OR SURFACE
- CONDUIT E ELECTRICAL HAND HOLE
- JUNCTION BOX
- NEW LIGHT POLE
- ♀ EXISTING LIGHT POLE SURFACE MOUNT PANELBOARD
- AWG AMERICAN WIRE GAUGE
- CKT CIRCUIT ETR EXISTING TO REMAIN
- GND GROUND


ELECTRIC GENERAL NOTES:


- WHERE FIXTURES ARE INDICATED TO BE REMOVED, THEY AND THEIR RELATED WIRING/CONDUIT SHALL BE REMOVED BACK TO THE SOURCE PANEL BOARD. IF CIRCUITS ARE FOUND TO HAVE OTHER LOADS ON THEM THAT ARE TO REMAIN, THESE CIRCUIT SHALL REMAIN. MAINTAIN CIRCUIT CONTINUITY TO FEED THRU TO ANY REMAINING LOADS. PROPERLY TERMINATE ALL WIRING.
- 2. FIELD VERIFY EXISTING CIRCUITING WITH OWNER.
- 3. PROVIDE SCHEDULE 40 PVC FOR UNDERGROUND CONDUITS. TRANSITION TO GALVANIZED STEEL RMC AT EXTERIOR WALL PENETRATIONS.
- 4. EXISTING CONDUITS MAY BE REUSED WHERE POSSIBLE.
- 5. UNDERGROUND CONDUITS SHALL BE A MINIMUM OF 30" BELOW FINISH GRADE.
- 6. TRANSFER TO ABOVE GRADE WITH GALVANIZED STEEL RMC PRIOR TO PENETRATING THE BUILDING.
- 7. VISIT THE SITE TO DETERMINE THE EXACT EXTENT OF ELECTRICAL DEMOLITION WORK REQUIRED TO COMPLETE THE NEW CONSTRUCTION. EXISTING CONDITIONS ARE TAKEN FROM FIELD OBSERVATION AND EXISTING BUILDING CONSTRUCTION DOCUMENTS. OTHER ITEMS MAY EXIST.
- 8. ALL LIGHTING CIRCUITS ARE TO BE MAINTAINED FOR REUSE. 9. PROVIDE NEW PANEL LOAD SCHEDULES FOR ALL PANELS, BOTH
- EXISTING AND NEW. ALL EXISTING LOADS SHALL BE TRACED AND CONFIRMED IN THE FIELD.
- 10. PAINT PULL BOXES TO MATCH WALL AND CEILINGS IF LOCATED IN FINISHED AREA, EXPOSED TO VIEW.


ELECTRICAL KEYED NOTES:

$\langle 1 \rangle$	PROVIDE LIGHT POLE, WITH LED HEAD FIXTURE AND INTEGRAL PHOTOCELL PROVIDE ONLY (1) PHOTOCELL PER LIGHTING CIRCUIT.
$\langle 2 \rangle$	PROVIDE LIGHT POLE, BASE AND LED HEAD FIXTURE AND INTEGRAL PHOTOCELL. PROVIDE ONLY (1) PHOTOCELL PER LIGHTING CIRCUIT.
$\langle 3 \rangle$	PROVIDE NEW CIRCUITS ABOVE CEILING FROM AVAILABLE SPACES OR SPA IN PANEL LP-1E IN LOADING DOCK FOR SITE LIGHTING. CIRCUIT ROUTE MU GO UP ABOVE 2ND FLOOR CEILING AND DOWN ON THE GYM BUILDING SID
4	PROVIDE NEW 1200A SIEMENS SWITCH, 480V, 3PH FOR NEW CHILLER UNI REMOVE EXISTING VERTICAL BUS IN SECTION AND REPLACE WITH (2) 3/16 INCHES THICK BY 4 INCHES WIDE NEW ALUMINUM BUS BARS FOR A 1200/ BUS BAR RATING PER PHASE. BUS BAR WORK MUST BE PERFORMED BY A SIEMENS CERTIFIED PERSONNEL.
5	CHILLER FEEDERS EXPOSED THROUGH BASEMENT: (3) SETS OF 500KCMIL AND (1) 3/0 GND IN 4" CONDUIT.
$\langle 6 \rangle$	NOT USED.
$\langle 7 \rangle$	EXISTING LIGHTING CIRCUIT TO REMAIN.
$\langle 8 \rangle$	NEW SPARE CONDUIT FOR FUTURE STORAGE BUILDING FIRE ALARM UPGRA
9	NEW STORAGE BUILDING FIRE ALARM WALL MOUNT SPARE CONDUIT.TERMINATE CONDUIT INSIDE BUILDING WITH A JUNCTION BOX.
$\langle 10 \rangle$	(3)#10 AWG WIRES AND (1)#10 GND IN 1" CONDUIT.
$\langle 11 \rangle$	(2)#10 AWG WIRES AND (1)#10 GND IN 1" CONDUIT.
(12)	(3)#10 AWG WIRES AND (1)#10 GND IN EXISTING CONDUIT. REUSE EXIST CIRCUITING.
(13)	PROVIDE SURFACE MOUNT LIGHTING PANELBOARD.
$\langle 14 \rangle$	PROVIDE NEW JBOX TO TIE IN NEW SPARE CONDUIT FOR STORAGE BUILDIN FIRE ALARM SYSTEM TO ROOM 1C3 EXISTING FIRE ALARM CONDUIT.
(15)	PROVIDE NEW ELECTRICAL HANDHOLE AND EXTEND EXISTING LIGHTING CIRCUITING TO PARKING LOT LIGHTING.

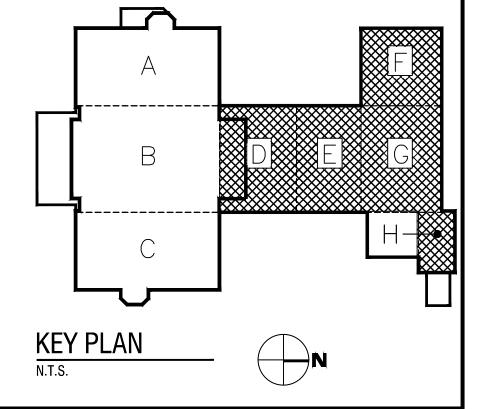
 $\langle 16
angle$ extend existing circuiting to parking lot lighting.

GENERAL LIGHTNING PROTECTION NOTES

- 1. THE LIGHTNING PROTECTION SYSTEM SHALL BE INSTALLED IN ACCORDANCE WITH U.L. 96A. NFPA 780 AND ANSI CODE REQUIREMENTS.
- 2. CONDUCTORS SHALL MAINTAIN A HORIZONTAL OR DOWNWARD COURSE, FREE FROM "U" OR "V" (UP AND DOWN) POCKETS.
- 3. NO BEND OF A CONDUCTOR SHALL HAVE A BEND RADIUS OF LESS THAN 8 INCHES.
- 4. ACTUAL JOB SITE CONDITIONS SHALL REQUIRE SLIGHT ALTERATIONS IN AIR TERMINAL AND GROUND ROD LOCATIONS.
- 5. BARE COPPER MATERIALS SHALL NOT BE INSTALLED ON ALUMINUM SURFACE AND ALUMINUM MATERIALS SHALL NOT BE INSTALLED ON COPPER SURFACE. ALUMINUM COMPONENTS SHALL NOT BE IN DIRECT CONTACT WITH EARTH. ALUMINUM DOWN CONDUCTORS SHALL BE CONNECTED TO COPPER CONDUCTORS USING BIMETALLIC FITTINGS WITHIN 18 INCHES OF EARTH.
- THE LIGHTNING PROTECTION SYSTEM SHALL BE INSTALLED IN A NEAT WORKMANLIKE AND INCONSPICUOUS MANNER SO THAT ALL COMPONENTS WILL BLEND IN WITH BUILDING AESTHETICS.
- 7. ALL ADHESIVE AIR TERMINALS BASES AND FITTINGS SHALL BE SECURED TO ROOF WITH AN ADHESIVE COMPOUND OR PITCH WHICH COMPLIES WITH ROOFING BOND REQUIREMENTS. ATTACHMENT OF CABLE SECURED TO AIR TERMINALS, AND BUILDING SHALL BE SECURED ALONG THE CABLE RUN AND ATTACHMENTS AND SHALL NOT BE MORE THAN 3 FT APART.
- 8. EACH INDIVIDUAL ITEM OF THE LIGHTNING PROTECTION SYSTEM IS NOT LABELED FOR SAKE OF CLARITY. ITEMS ARE INDICATED AT RANDOM LOCATIONS ONLY. PROVIDE A COMPLETE SYSTEM THAT SHALL INCLUDE A UL "MASTER LABEL" CERTIFICATION.
- 9. CONDUCTOR SUPPORTS SHALL BE CORROSION RESISTANT TYPE.
- 10. WHERE TERMINALS GREATER THAN 24 INCHES IN HEIGHT ARE USED, THEY SHALL BE SUPPORTED AT A POINT AT LEAST HALF THE HEIGHT OF THE ROD AND BE SPACED MORE THAN 20 BUT NOT LESS THAN 25 FEET APART FOR PERIMETER PROTECTION.
- 11. METAL BODIES WITHIN 6'-0" OF THE LIGHTNING PROTECTION SYSTEM SHALL BE BONDED TO THE SYSTEM IN ACCORDANCE WITH UL96A.
- 12. ALL LIGHTNING PROTECTION SYSTEM COMPONENTS SHALL BE LISTED, EXCEPTING HARDWARE SCREWS, BOLTS, ETC.
- 13. MAIN SIZE CONDUCTORS USED FOR BONDING OTHER SYSTEMS TO INCLUDE BUT NOT LIMITED TO: METALLIC WATER SYSTEMS, STEAM OR HOT WATER HEATING SYSTEMS, ELECTRIC SERVICES, TELEPHONE SYSTEMS, ANTENNA GROUNDS, OTHER LARGE UNGROUNDED METALLIC MASSES SHALL NOT BE SMALLER THAN 6 AWG.

DEMOLITION NOTES

(1) DISCONNECT AND REMOVE LIGHTNING PROTECTION WIRING LAID ON GROUND WITH CARE FOR ROOF WORK. STORE IN A SECURE LOCATION AND PROTECT FROM DEMOLITION WORK.


KEY NOTES

-1

 $\langle 1 \rangle$ Install lightning protection wiring as indicated on roof plan.

T	

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration

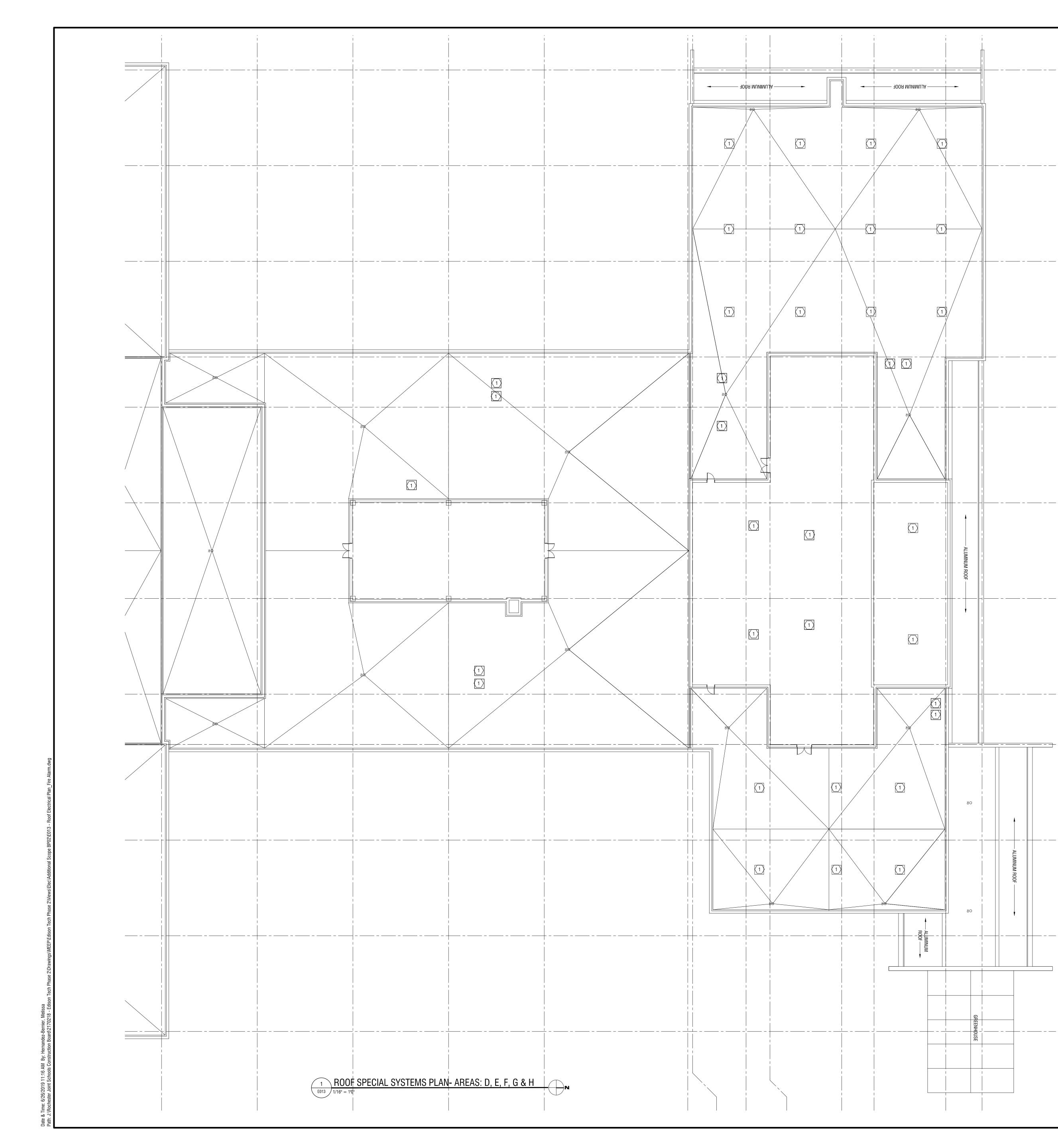
© 2019 LaBella Associates

ROCHESTER SCHOOLS MODERNIZATION PROGRAM 1776 N. CLINTON AVE ROCHESTER, NY 14621

EDISON TECHNICAL SCHOOL 655 COLFAX STREET

ROCHESTER, NY 14606

SED NO. 26-16-00-01-0-111-032

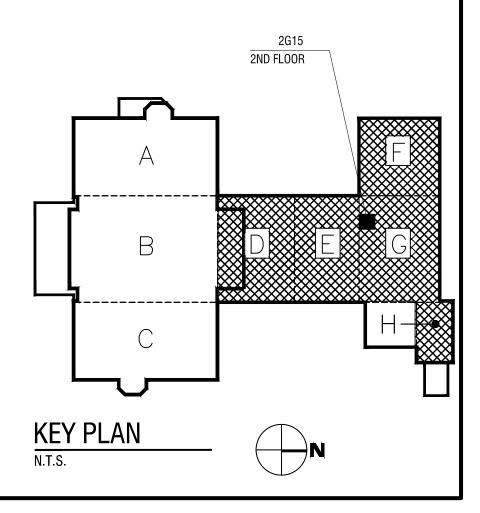

D	DWT NO. 26-16-00-01-7-999-020					
REVISION	S					
NO:	DATE:	DESCRIPTION:				
_	-	-				
1	6.28.19	BID ADDENDUM 1				
PROJECT N	IUMBER:					
		2170218				
DRAWN BY	DRAWN BY: VP					
REVIEWED BY: MVR						
ISSUED FOR: BID DOCUMENTS						
DATE:	DATE: JUNE 26, 2019					

DRAWING NAME:

ROOF ELECTRICAL **DEMOLITION PLAN-**LIGHTNING PROTECTION AREA D, E, F, G, & H

DRAWING NUMBER:

ELECTRIC GENERAL NOTES:


- A ELECTRICAL CONTRACTOR SHALL COORDINATE ALL ELECTRICAL DEVICE PLACEMENT AND ELEVATIONS WITH CASEWORK SUPPLIER AND ARCHITECTS PRIOR TO ROUGH-IN. GENERAL CONTRACTOR SHALL PROVIDE ALL DRILLING AND GROMMETING IN CASEWORK FOR CORD ACCESS IF REQUIRED.
- B COORDINATE LOCATIONS OF CEILING DEVICES IN MECHANICAL SPACES WITH HVAC CONTRACTOR TO AVOID CONFLICTS WITH EQUIPMENT.
- C PROVIDE NEW WIRING FOR ALL NEW ADDRESSABLE FIRE ALARM SYSTEM DEVICES.
- D WHERE DOOR HOLDERS ARE SHOWN, IF EXISTING DOOR HARDWARE IS TO REMAIN PROVIDE A POWER SUPPLY WITH A 24V WIRING.
- E POWER TO SMOKE DAMPER ACTUATORS MUST BE THRU A FIRE SYSTEM RELAY. RELAY TO BE MOUNT ADJACENT TO DAMPER. UPON NEAREST UPSTREAM SD SMOKE DETECTOR ACTIVATION, RELAY SENDS ACTUATOR SIGNAL TO CLOSE DAMPER. REFER TO MECHANICAL PLANS FOR FIRE SMOKE DAMPER LOCATIONS.

ELECTRIC KEYED NOTES:

1 DISCONNECT EXISTING SMOKE DETECTOR AT SMOKE HATCH AND REUSE EXISTING CIRCUITING IF IT'S AN EMERGENCY CIRCUIT. IF ON NORMAL POWER, REMOVE WIRING BACK TO SOURCE, LABEL BRANCH BREAKER AS AVAILABLE AND PROVIDE NEW 120V, 20A EMERGENCY CIRCUIT FROM NEAREST PANEL. PROVIDE A NEW ADDRESSABLE 120V SMOKE DETECTOR. AND CONNECT TO BUILDING FIRE ALARM PANEL THROUGH 24V LINE FOR SMOKE DETECTOR STATUS MONITORING AND TO ELECTRIC THERMOLATCH.

NEW EMERGENCY CIRCUITS FROM AVAILABLE SPACES AVAILABLE IN PANEL EP2G IN ROOM 2G15.

DRAWING NUMBER:

AREAS: D, E, F, G, & H

DRAWING NAME:

ROOF SPECIAL
SYSTEMS PLAN-

REVISIONS						
NO:	DATE:	DESCRIPTION:				
_	-	-				
1	6.28.19	BID ADDENDUM 1				
PROJECT N	IUMBER:					
		2170218				
DRAWN BY: MHB						
REVIEWED	ΒΥ·	MVR				
ISSUED FO	ISSUED FOR:					
BID DOCUMENTS						
DATE:		UNE 26, 2019				

SED NO. 26-16-00-01-0-111-032 DWT NO. 26-16-00-01-7-999-020

655 COLFAX STREET ROCHESTER, NY 14606

EDISON TECHNICAL SCHOOL

MODERNIZATION PROGRAM 1776 N. CLINTON AVE ROCHESTER, NY 14621

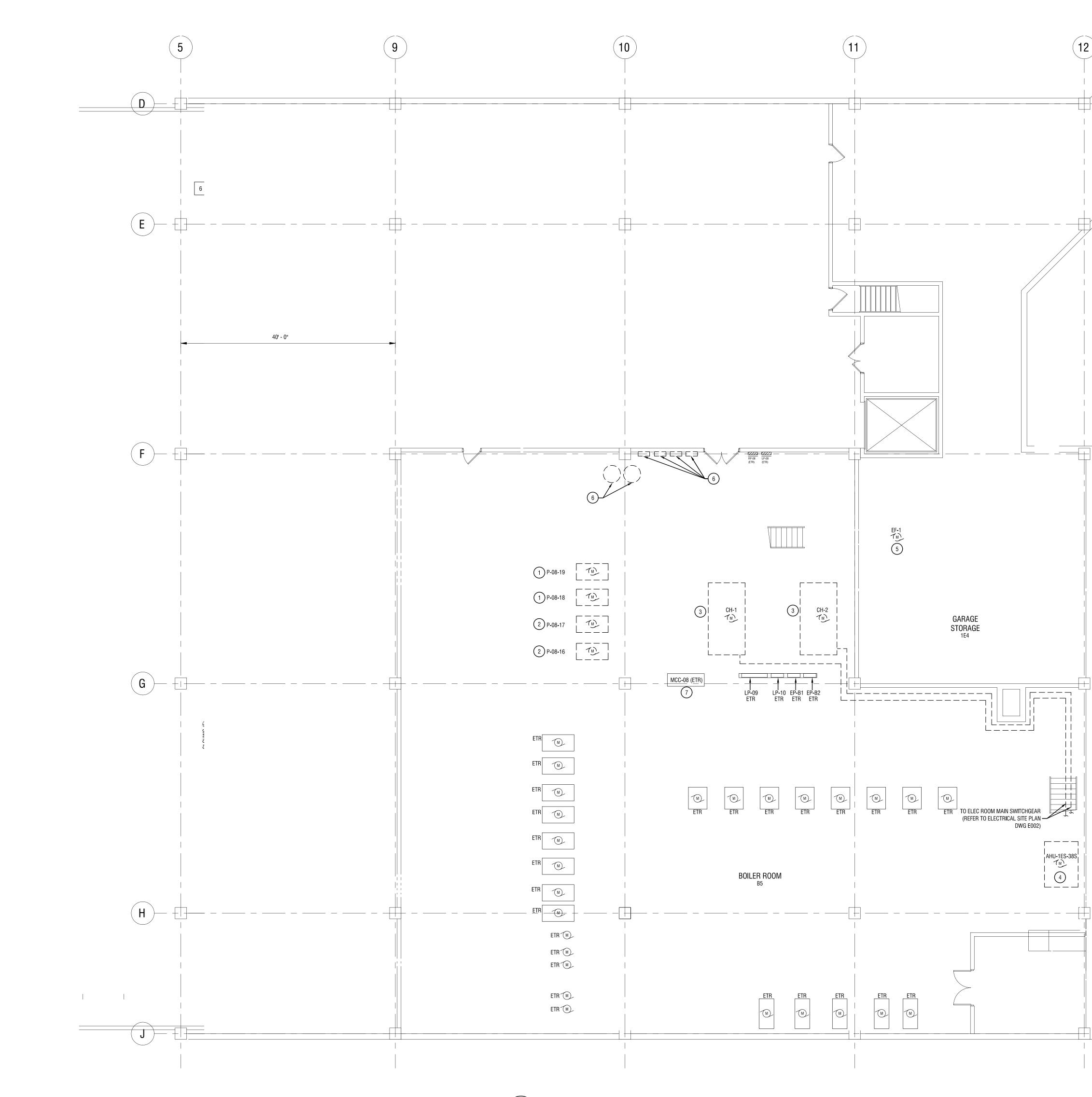
ROCHESTER SCHOOLS

© 2019 LaBella Associates

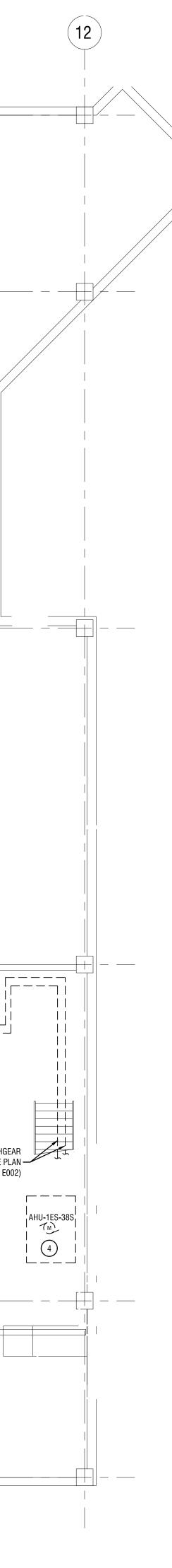
an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of

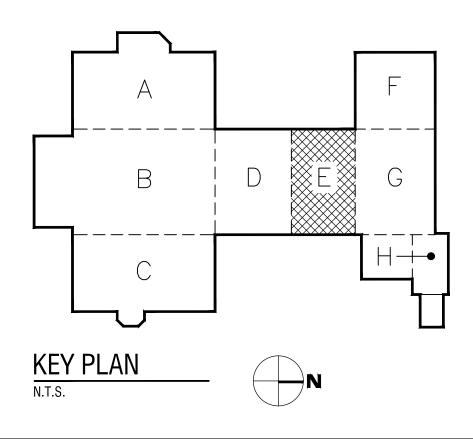
labellapc.com RSN in association with azak Associate


Powered by partnershi

300 State Street, Suite 201


Rochester, NY 14614

585-454-6110



1 MECHANICAL ROOM ELECTRICAL DEMOLITION PLAN E101 1/8"=1'-0"

ELECTRIC DEMOLITION NOTES:

- 1 REMOVE POWER TO EXISTING PUMP, DISCONNECT SWITCH AND ALL ASSOCIATED WIRING BACK TO LP-09.
- (2) REMOVE POWER TO EXISTING PUMP AND WIRING BACK TO MCC-08.
- 3 REMOVE POWER TO EXISTING CHILLER UNIT, WIRING BACK TO MAIN SWITCHGEAR, DISCONNECT AND BREAKER.
- (4) REMOVE POWER TO EXISTING AHU, DISCONNECT AND WIRING BACK TO MCC-08.
- 5 REMOVE POWER TO EXISTING EXHAUST FAN, DISCONNECT AND WIRING BACK TO LP-08.
- 6 REMOVE POWER TO EXISTING EQUIPMENT AND ELECTRICAL CONNECTIONS.
- 7 REMOVE MOTOR CONTROLS FOR UNITS BEING REPLACED FROM MCC TUBES. PROVIDE NEW REPLACEMENT BREAKERS AS INDICATED IN SCHEDULE IN DWG E000.

DRAWING NUMBER:

DRAWING NAME:

MECHANICAL ROOM ELECTRICAL DEMOLITION PLAN

	DWT NO. 26-16-00-01-7-999-020					
REVISION	S					
NO:	DATE:	DESCRIPTION:				
_	-	-				
1	6.28.19	BID ADDENDUM 1				
PROJECT N	PROJECT NUMBER: 2170218					
DRAWN BY	:					
REVIEWED	BY:	МНВ				
	D.	MVR				
ISSUED FO		D DOCUMENTS				
DATE:	DATE: JUNE 26, 2019					

SED NO. 26-16-00-01-0-111-032

655 COLFAX STREET ROCHESTER, NY 14606

EDISON TECHNICAL SCHOOL

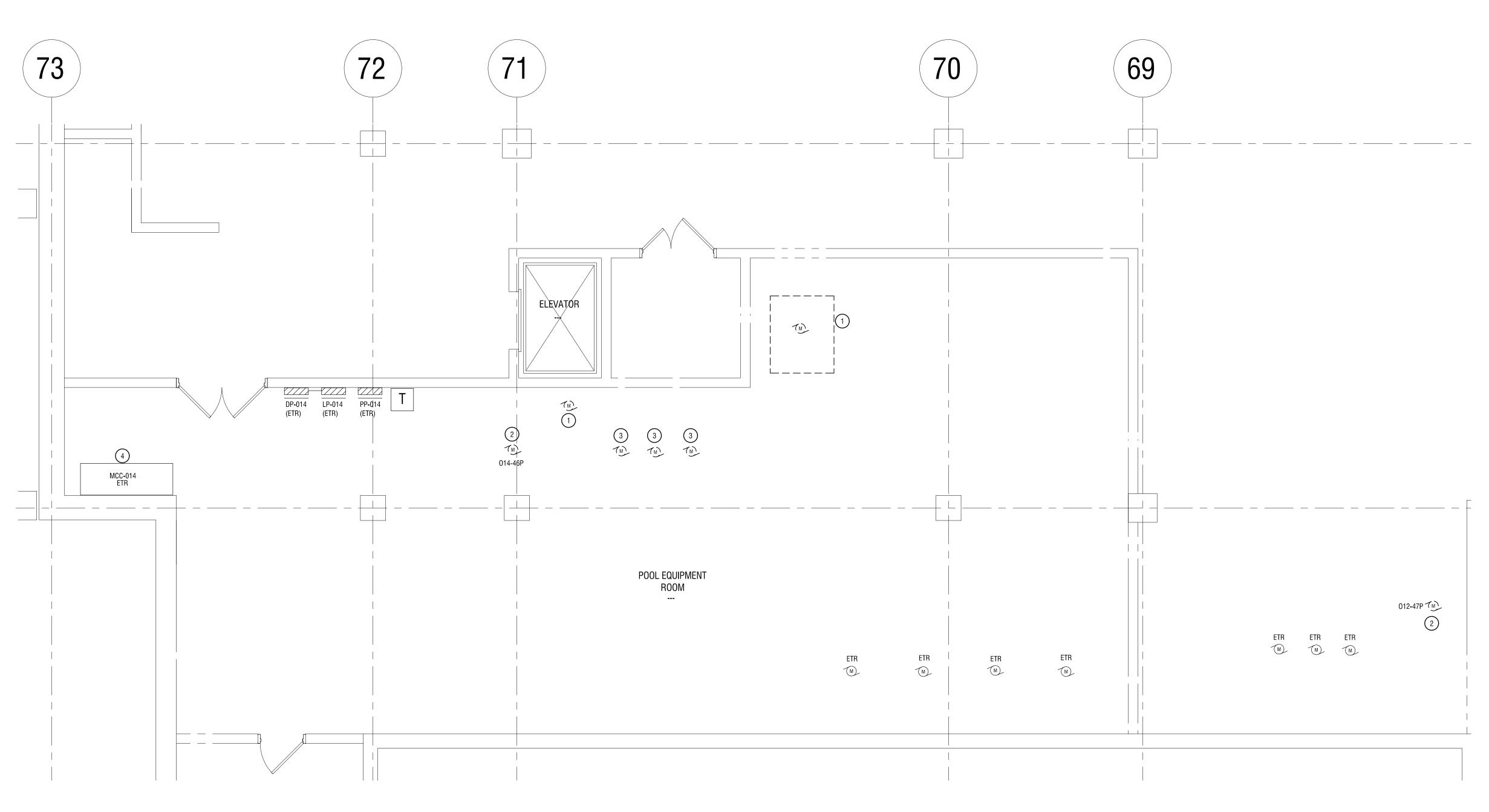
MODERNIZATION PROGRAM 1776 N. CLINTON AVE ROCHESTER, NY 14621

© 2019 LaBella Associates

ROCHESTER SCHOOLS

description of the alteration.

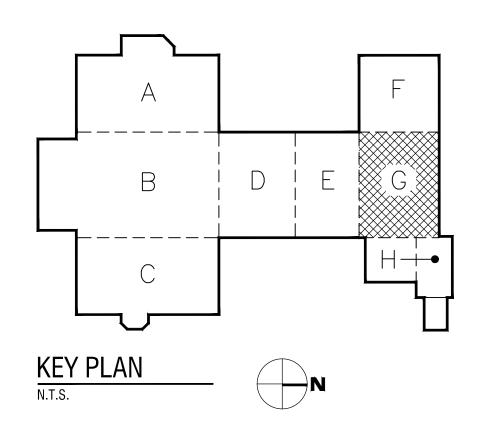
It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration


2000 EAIRPORT-NINE MILE POINT ROAD, SUITE 41 PENTELD, NY 14520 PHONE, 585.377.3550 • FAX. 586.377.3559 555 Penbrooke Drive • Penfield, NY 14526 main: 585.388.2060 • fax: 585.388.2070

RSM in association with Savin Eng Razak Associates ARCHITECTURE ENGINEERING LAND SURVEYIN INTERIORS PLANNING LANDSCAPE

300 State Street, Suite 201 Rochester, NY 14614 585-454-6110

labellapc.com



BASEMENT ELECTRICAL DEMOLITION PLAN- AREA G/H E102 1/4"=1'-0"

ELECTRIC DEMOLITION NOTES:

SCHEDULE IN DWG E000.

- 1 REMOVE POWER TO EXISTING DEHUMIDIFIER, PUMP, DISCONNECT SWITCH AND ALL ASSOCIATED WIRING BACK TO LP-014.
- (2) REMOVE POWER TO EXISTING PUMP, DISCONNECT AND WIRING BACK TO
- MCC-014. 3 DISCONNECT POWER TO EQUIPMENT FOR NEW PIPING WORK AND RECONNECT ONCE NEW PIPING WORK IS COMPLETED.
- 4 REMOVE MOTOR CONTROLS FOR UNITS BEING REPLACED FROM MCC TUBES.PROVIDE NEW REPLACEMENT BREAKERS AS INDICATED IN

DRAWING NUMBER:

DRAWING NAME:

BASEMENT ELECTRICAL DEMOLITION PLAN- AREA G/H

	SED NO. 26-16-00-01-0-111-032 DWT NO. 26-16-00-01-7-999-020				
REVISIONS	5				
NO:	DATE:	DESCRIPTION:			
-	-	-			
1	6.28.19	BID ADDENDUM 1			
PROJECT N	UMBER:				
		2170218			
DRAWN BY: MHB					
REVIEWED BY:		MV/P			
	MVR				
ISSUED FO		D DOCUMENTS			
DATE:	J	UNE 26, 2019			

655 COLFAX STREET ROCHESTER, NY 14606

EDISON TECHNICAL SCHOOL

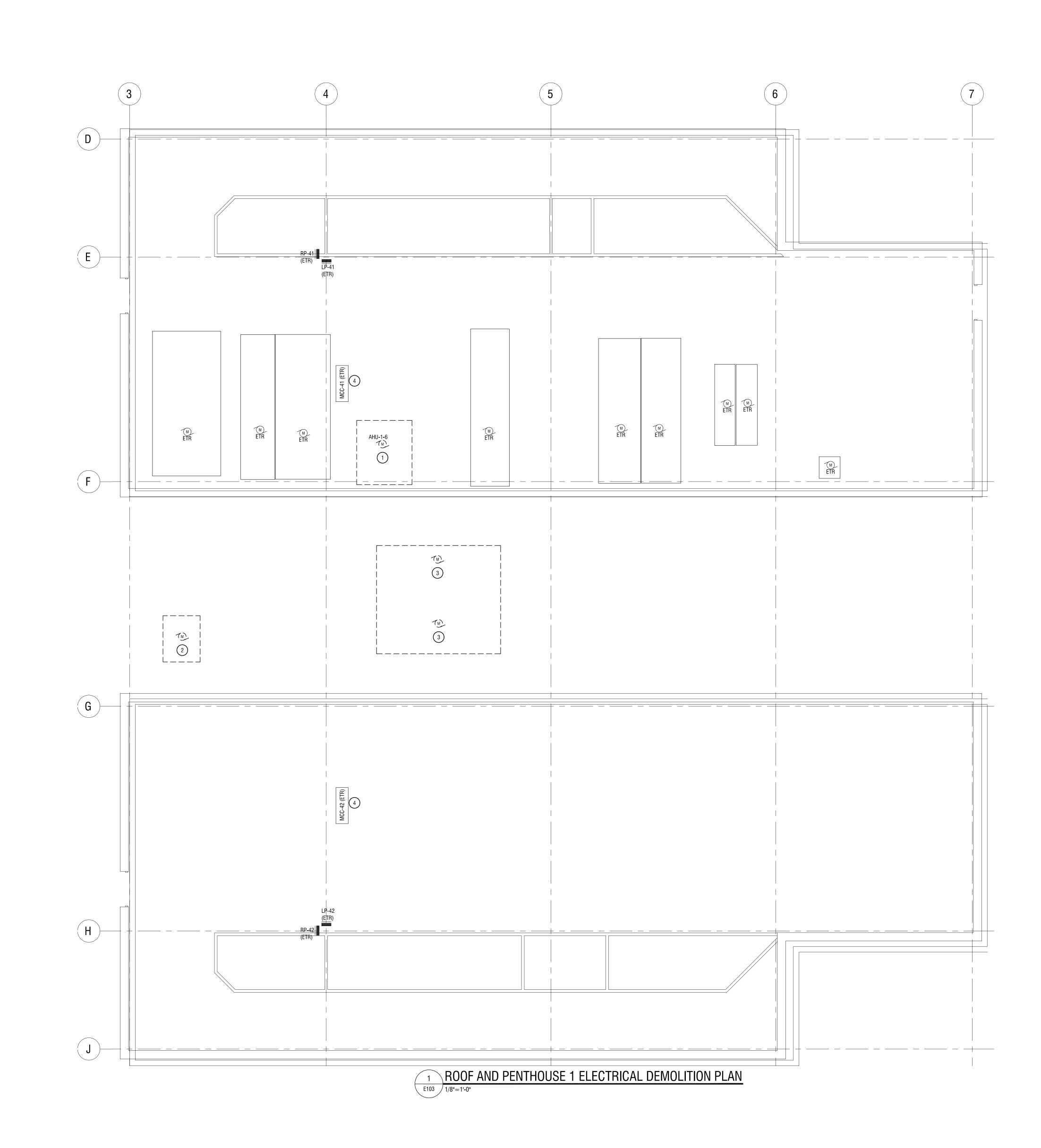
Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration. © 2019 LaBella Associates

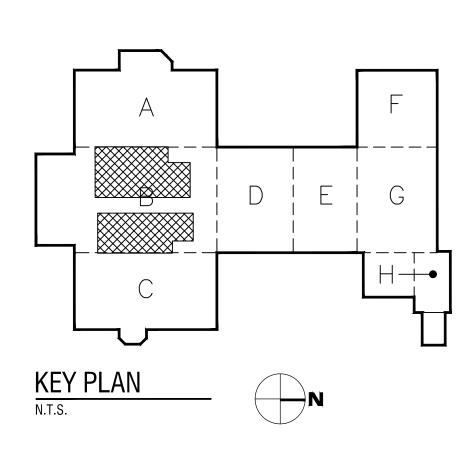
ROCHESTER SCHOOLS

MODERNIZATION PROGRAM

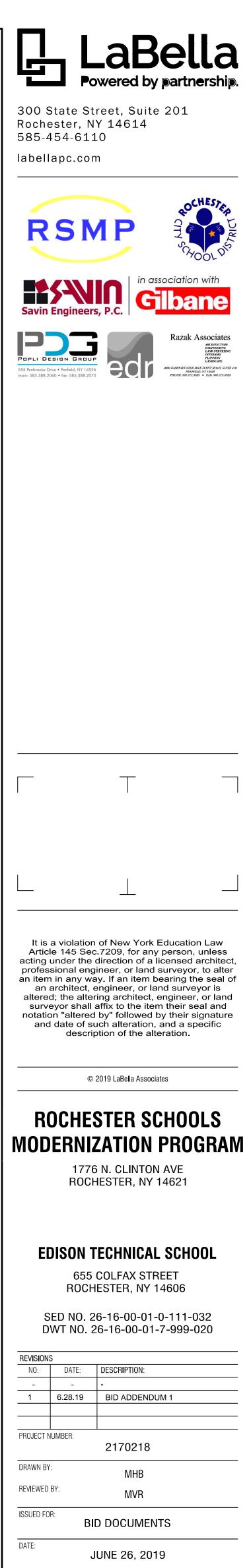
1776 N. CLINTON AVE ROCHESTER, NY 14621

It is a violation of New York Education Law

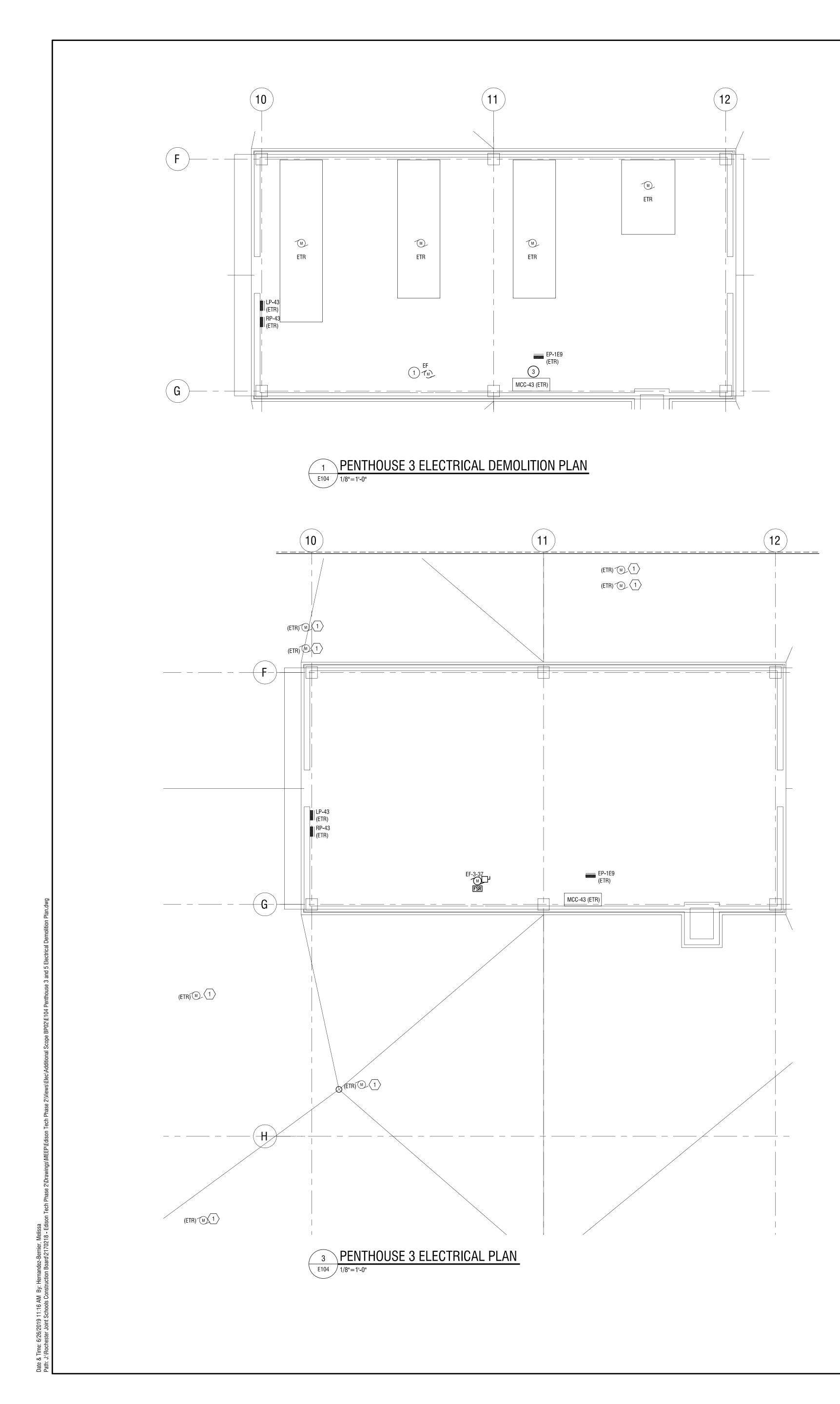

RSMP in association with Razak Associates ARCHITECTUR INFORMATION 555 Penbrooke Drive • Penfield, NY 14526 main: 585.388.2060 • fax: 585.388.2070

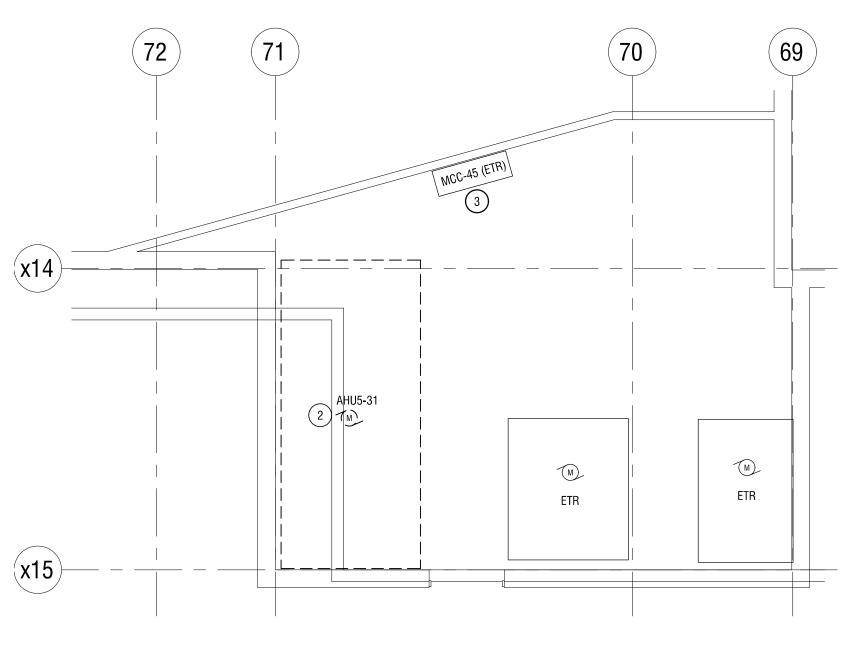

300 State Street, Suite 201 Rochester, NY 14614 585-454-6110

labellapc.com

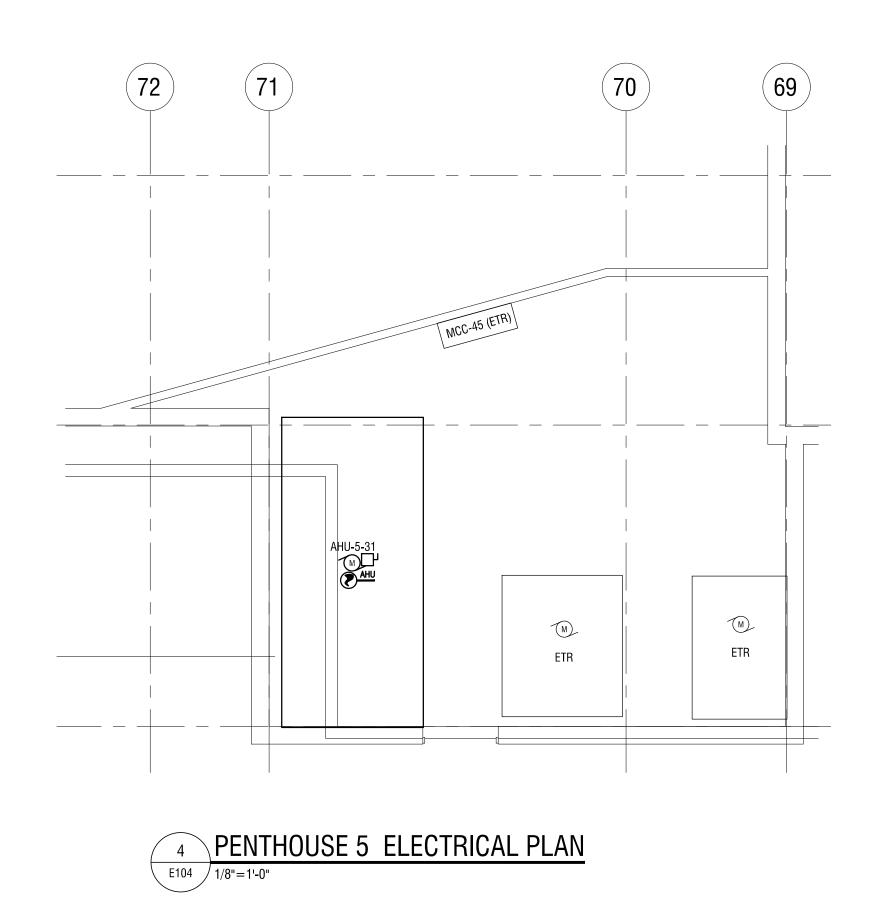


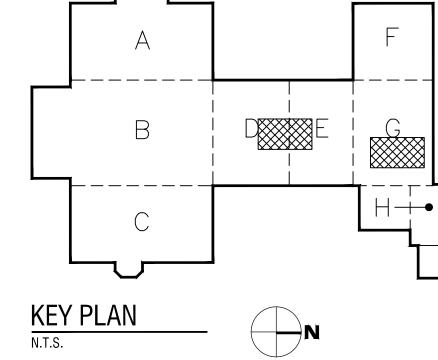
- DISCONNECT SWITCH.
 REMOVE MOTOR CONTROLS FOR UNITS BEING REPLACED FROM MCC TUBES. PROVIDE NEW REPLACEMENT BREAKERS AS INDICATED IN SCHEDULE IN DWG E000.
- 3 REMOVE POWER TO EXISTING COOLING TOWERS AND ASSOCIATED DISCONNECT SWITCH.
- 2 REMOVE POWER TO EXISTING CHILLER AND ASSOCIATED DISCONNECT SWITCH.
- 1 REMOVE POWER TO EXISTING AIR HANDLING UNIT, FAN ABOVE AND ASSOCIATED DISCONNECT SWITCH.
- ELECTRIC DEMOLITION NOTES:




DRAWING NAME:

ROOF AND PENTHOUSE 1 ELECTRICAL DEMOLITION PLAN


DRAWING NUMBER:



ELECTRIC KEYED NOTES: DISCONNECT POWER TO EXISTING EQUIPMENT. EXTEND EXISTING CIRCUITING AND RECONNECT UNIT. (REFER TO MECHANICAL DRAWINGS FOR DETAILS)

1. CONNECT FIRE ALARM DEVICE TO BUILDING ADDRESSABLE FIRE ALARM SYSTEM.

GENERAL NOTES:

2 REMOVE POWER TO EXISTING AHU AND ASSOCIATED DISCONNECT SWITCH. 3 REMOVE MOTOR CONTROLS FOR UNITS BEING REPLACED FROM MCC TUBES. PROVIDE NEW REPLACEMENT BREAKERS AS INDICATED IN SCHEDULE IN DWG E000.

1 REMOVE POWER TO EXISTING EXHAUST FAN AND ASSOCIATED DISCONNECT SWITCH.

ELECTRIC DEMOLITION NOTES:

DRAWING NUMBER:

PENTHOUSE 3 AND 5 ELECTRICAL DEMOLITION AND NEW WORK PLAN

D	WT NO. 2	26-16-00-01-7-999-020				
REVISION	S					
NO:	DATE:	DESCRIPTION:				
_	-	-				
1	6.28.19	BID ADDENDUM 1				
PROJECT	NUMBER:	2170218				
DRAWN BY	DRAWN BY: MHB					
REVIEWED	REVIEWED BY: MVR					
ISSUED FC	ISSUED FOR: BID DOCUMENTS					
DATE:	,	JUNE 26, 2019				
DRAWING	NAME:					

SED NO. 26-16-00-01-0-111-032

655 COLFAX STREET ROCHESTER, NY 14606

EDISON TECHNICAL SCHOOL

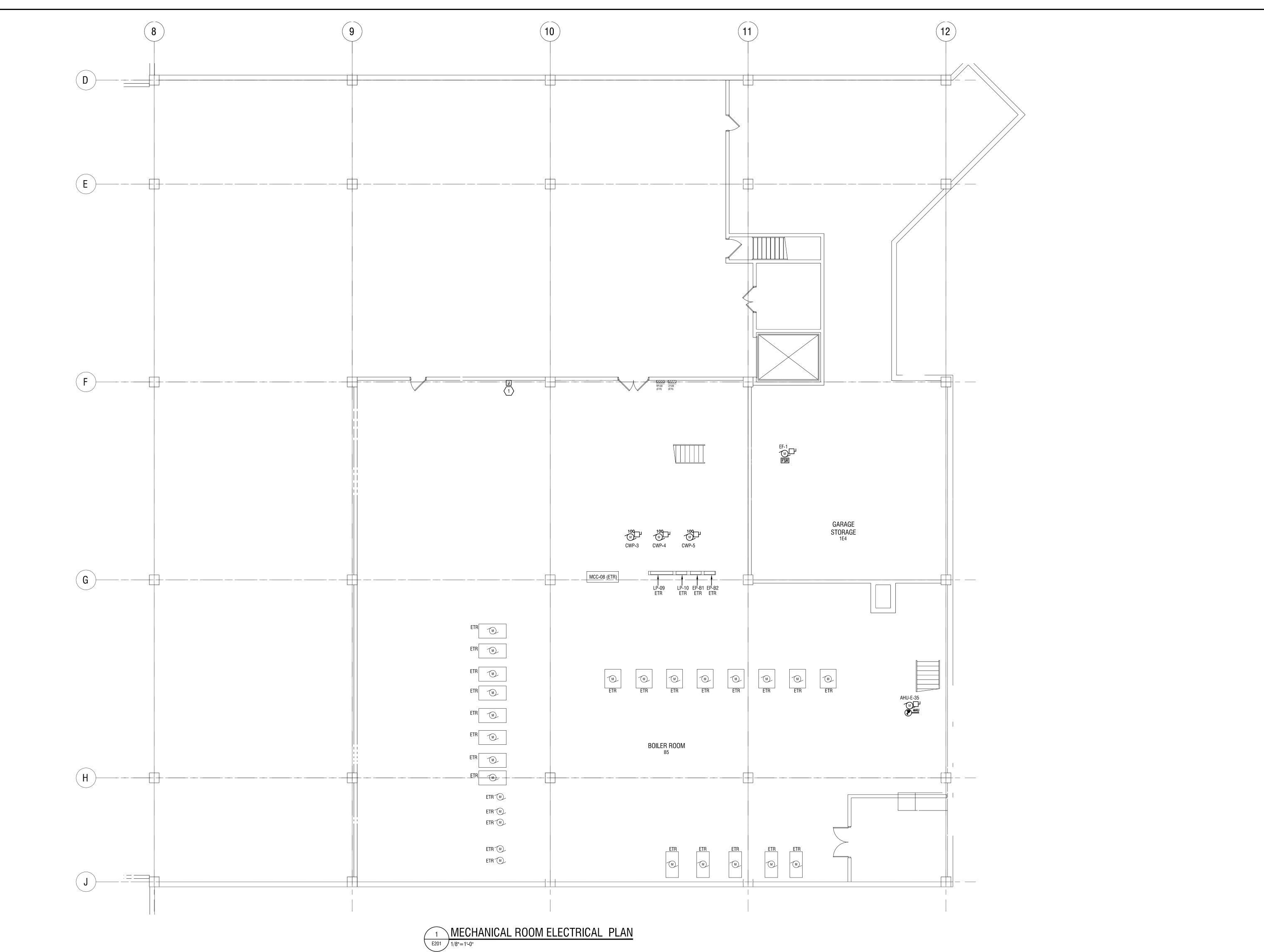
ROCHESTER, NY 14621

ROCHESTER SCHOOLS MODERNIZATION PROGRAM 1776 N. CLINTON AVE

© 2019 LaBella Associates

Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

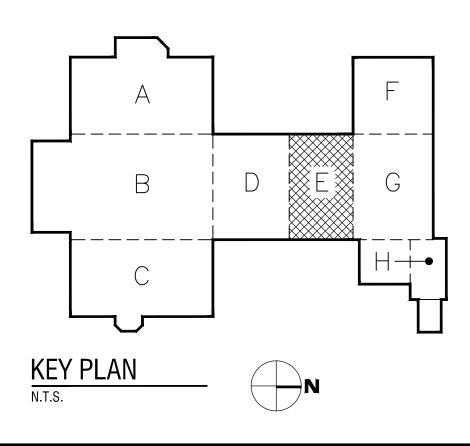
It is a violation of New York Education Law


Razak Associates Restriction BEREIN BEREIN

labellapc.com RSM Savin Engineers, P.C.

Powered by partnership

300 State Street, Suite 201 Rochester, NY 14614 585-454-6110



GENERAL NOTES:

1. CONNECT FIRE ALARM DEVICE TO BUILDING ADDRESSABLE FIRE ALARM SYSTEM.

ELECTRIC KEYED NOTES:

1 PROVIDE (1) 120V, 20A CIRCUIT FOR GLYCOL STATION POWER FROM CIRCUITS AVAILABLE FROM DEMOLITION WORK.

DRAWING NUMBER:

DRAWING NAME:

MECHANICAL ROOM ELECTRICAL PLAN

DWT NO. 26-16-00-01-7-999-020						
REVISIONS	3					
NO:	DATE:	DESCRIPTION:				
-	_	-				
1	6.28.19	BID ADDENDUM 1				
PROJECT N	PROJECT NUMBER: 2170218					
DRAWN BY	:					
	MHB					
EVIEWED BY: MVR						
SSUED FO	BID DOCUMENTS					
DATE:	ATE: JUNE 26, 2019					

ROCHESTER, NY 14606 SED NO. 26-16-00-01-0-111-032

655 COLFAX STREET

EDISON TECHNICAL SCHOOL

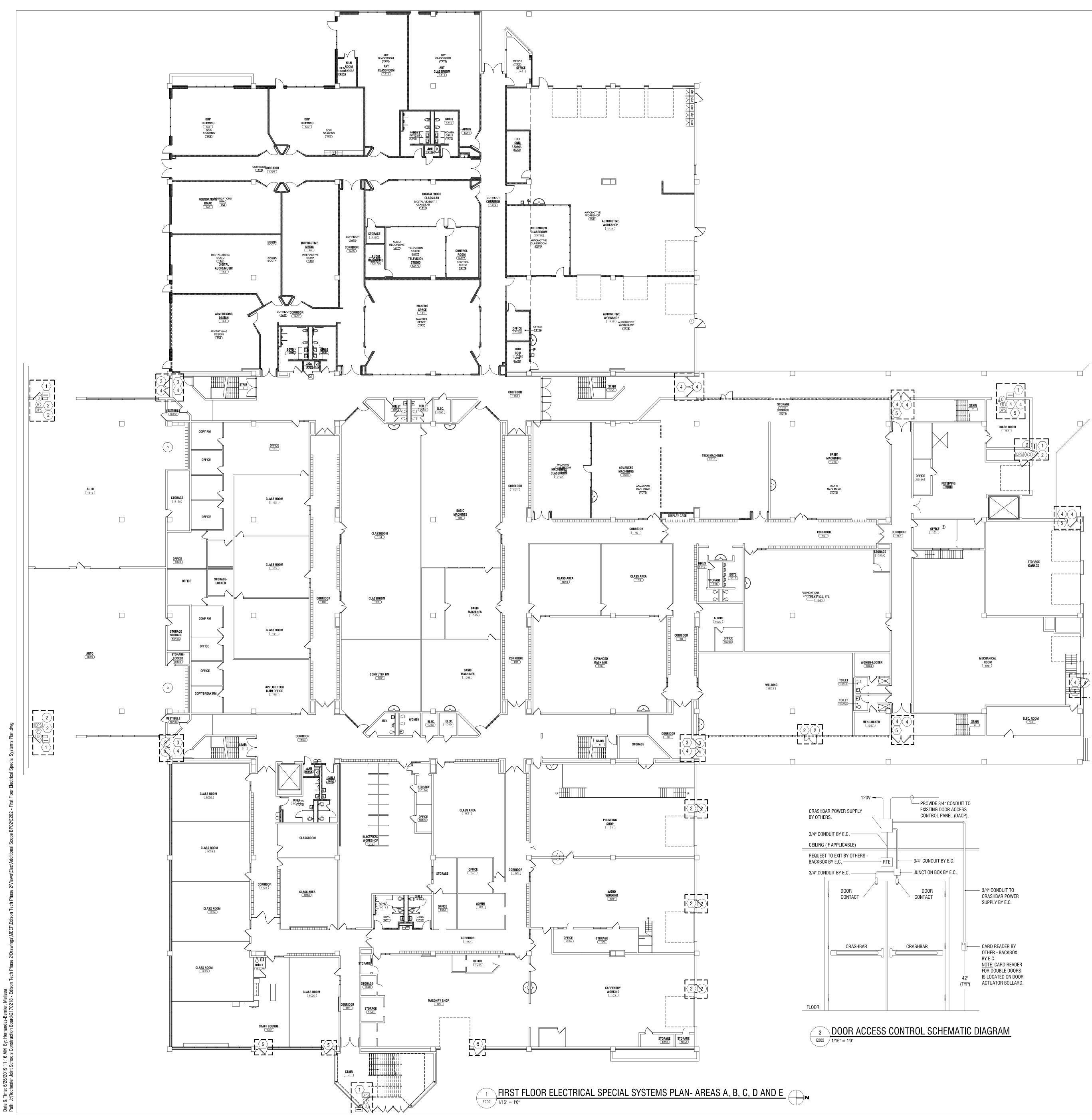
1776 N. CLINTON AVE ROCHESTER, NY 14621

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

© 2019 LaBella Associates

ROCHESTER SCHOOLS

MODERNIZATION PROGRAM

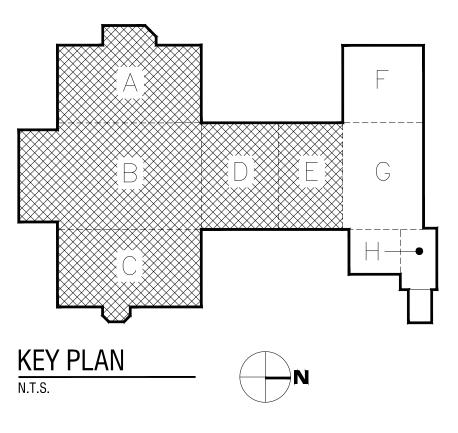

____ _____

Razak Associates Result Design Group S55 Penbrooke Drive • Penfield, NY 14526 min: 585.388.2000 • fox: 585.388.2000

RSMP Savin Engineers, P.C.

Powered by partnership 300 State Street, Suite 201 Rochester, NY 14614 585-454-6110

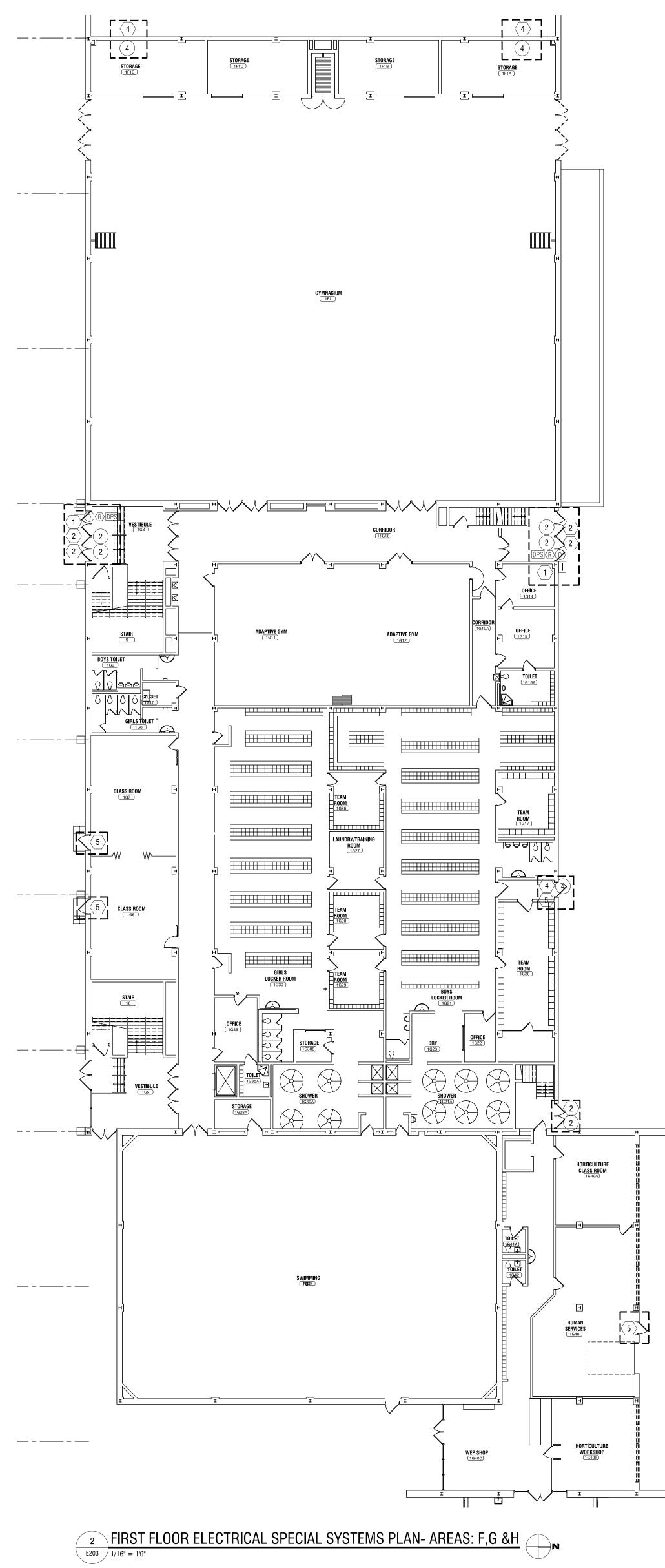
labellapc.com

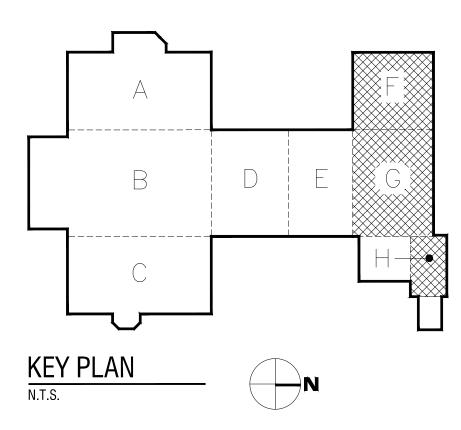

ELECTRIC DEMOLITION NOTES: 1) REMOVE EXISTING CARD READER.

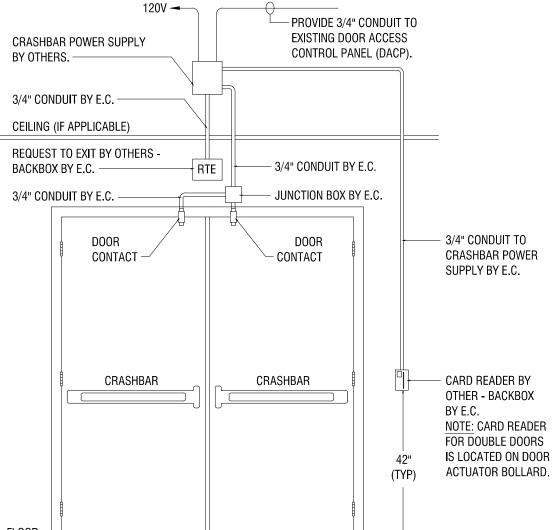
- 2) REMOVE EXISTING EXIT SIGN AND POWER TO DEVICES THAT WILL
- INTERFERE WITH DOOR DEMOLITION AND NEW WORK. SAVE EXIT SIGNS AND WIRING FOR REUSE.
- (3) REMOVE EXIT SIGN. SAVE WIRING FOR REUSE.

(4) REMOVE POWER TO DEVICES THAT WILL INTERFERE WITH DOOR DEMOLITION AND NEW WORK.

ELECTRIC KEYED NOTES:

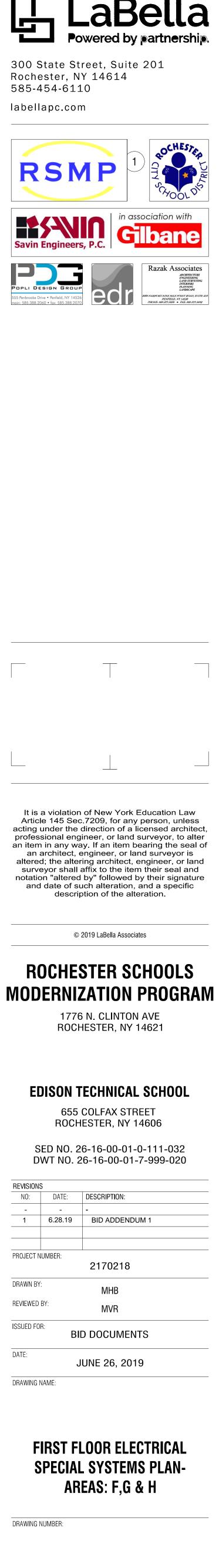

- 1 INSTALL NEW PROXIMITY CARD READER AND NECESSARY POWER FROM NEAREST PANEL WITH AVAILABLE SPARES. CARD READER TO MATCH BUILDING STANDARD.
- \langle 2 \rangle RE-INSTALL EXIT SIGN AND POWER REMOVED DURING DEMOLITION.
- \langle 3 angle provide New Ceiling mount exit sign. Reuse existing circuiting.
- $\langle 4 \rangle$ restore power connections impacted by demolition work.
- (5) PROVIDE NEW CEILING MOUNT EXIT SIGN. POWER SOURCE MUST BE



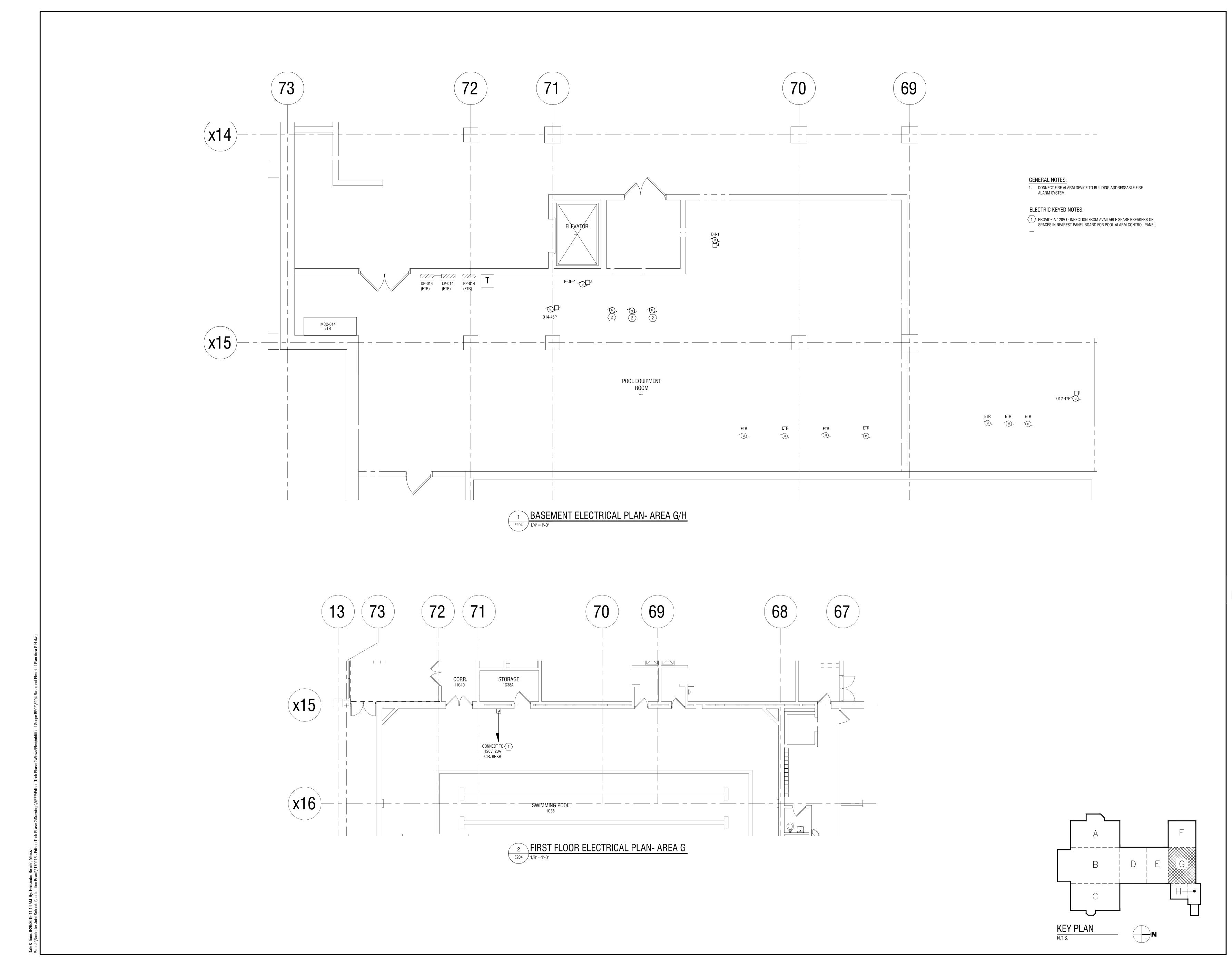


BY OTHERS. —

FLOOR



3 DOOR ACCESS CONTROL SCHEMATIC DIAGRAM



- $\langle 2 \rangle$ re-install exit sign and power removed during demolition. \langle 3 \rangle provide New Ceiling mount exit sign. Reuse existing circuiting. $\langle 4 \rangle$ RESTORE POWER CONNECTIONS IMPACTED BY DEMOLITION WORK. \langle 5 \rangle provide New Ceiling mount exit sign. Power source must be
- BUILDING STANDARD.
- ELECTRIC KEYED NOTES: 1 INSTALL NEW PROXIMITY CARD READER AND NECESSARY POWER FROM NEAREST PANEL WITH AVAILABLE SPARES. CARD READER TO MATCH
- (4) REMOVE POWER TO DEVICES THAT WILL INTERFERE WITH DOOR DEMOLITION AND NEW WORK.
- (3) REMOVE EXIT SIGN. SAVE WIRING FOR REUSE.
- (1) REMOVE EXISTING CARD READER. (2) REMOVE EXISTING EXIT SIGN AND POWER TO DEVICES THAT WILL INTERFERE WITH DOOR DEMOLITION AND NEW WORK. SAVE EXIT SIGNS AND WIRING FOR REUSE.
- ELECTRIC DEMOLITION NOTES:

E203

Т	
\bot	

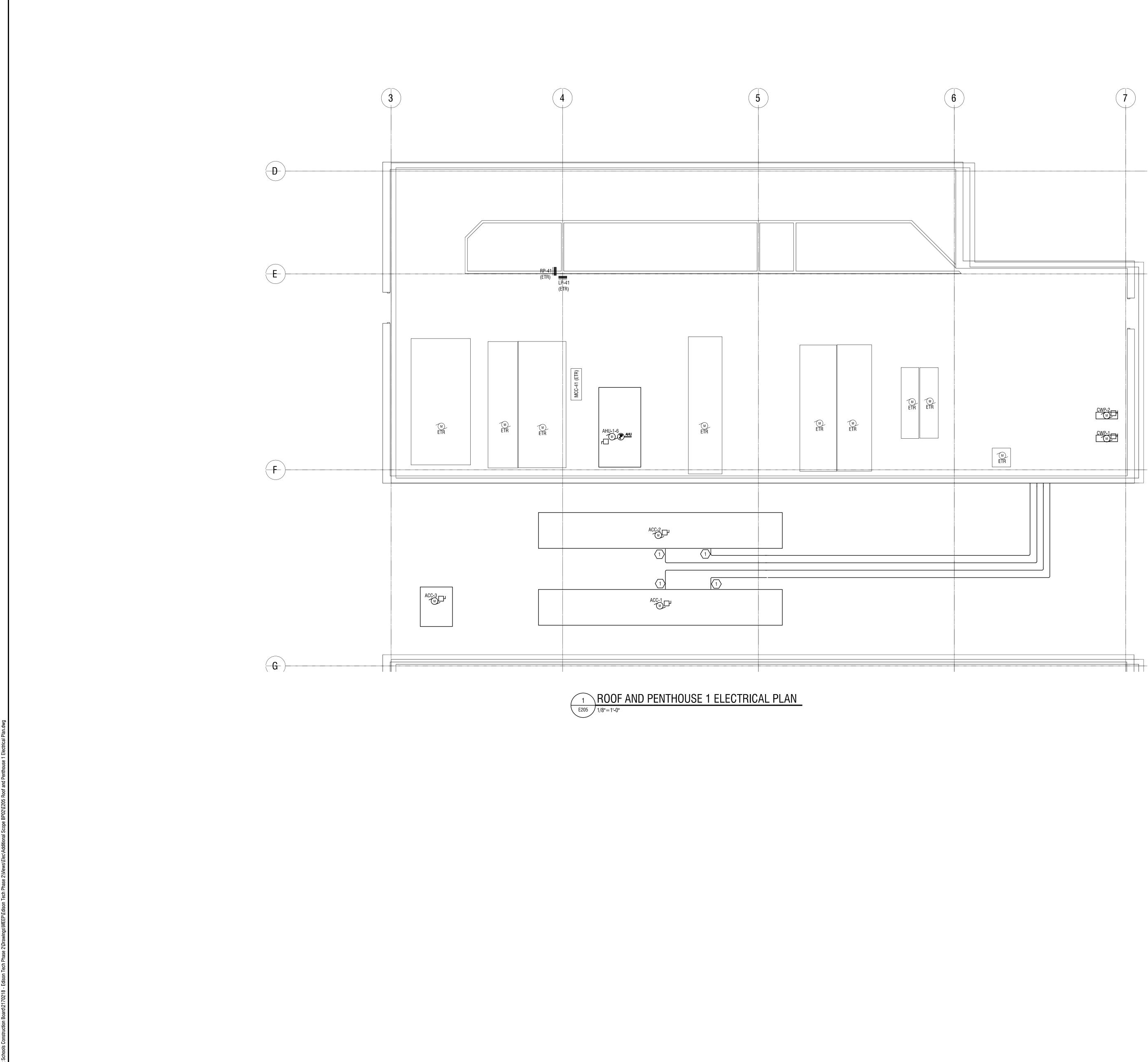
It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

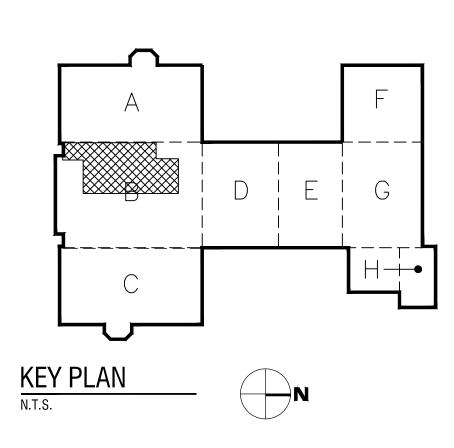
© 2019 LaBella Associates

ROCHESTER SCHOOLS MODERNIZATION PROGRAM 1776 N. CLINTON AVE ROCHESTER, NY 14621

EDISON TECHNICAL SCHOOL 655 COLFAX STREET ROCHESTER, NY 14606

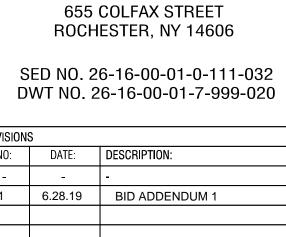
SED NO. 26-16-00-01-0-111-032 DWT NO. 26-16-00-01-7-999-020


REVISION	S	
NO:	DATE:	DESCRIPTION:
_	-	-
1	6.28.19	BID ADDENDUM 1
PROJECT N	IUMBER:	
		2170218
DRAWN BY	<i>.</i>	
Bladine		MHB
REVIEWED BY:		
		MVR
ISSUED FO		
	BI	D DOCUMENTS
DATE:		
	L	IUNE 26, 2019


DRAWING NAME:

BASEMENT ELECTRICAL PLAN- AREA G/H

DRAWING NUMBER:



ELECTRIC KEYED NOTES:

GENERAL NOTES: 1. CONNECT FIRE ALARM DEVICE TO BUILDING ADDRESSABLE FIRE ALARM SYSTEM.

1 PROVIDE POWER FOR PIPING HEAT TRACING FROM PANELS LP-41 OR RP-41. DESIGN BASIS APPROXIMATE POWER CONSUMPTION IS 8 WATTS/LF.

It is a violation of New York Education Law

Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect,

acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

description of the alteration.

© 2019 LaBella Associates

ROCHESTER SCHOOLS

MODERNIZATION PROGRAM

1776 N. CLINTON AVE

ROCHESTER, NY 14621

EDISON TECHNICAL SCHOOL

LaBella Powered by partnership.

Savin Engineers, P.C.

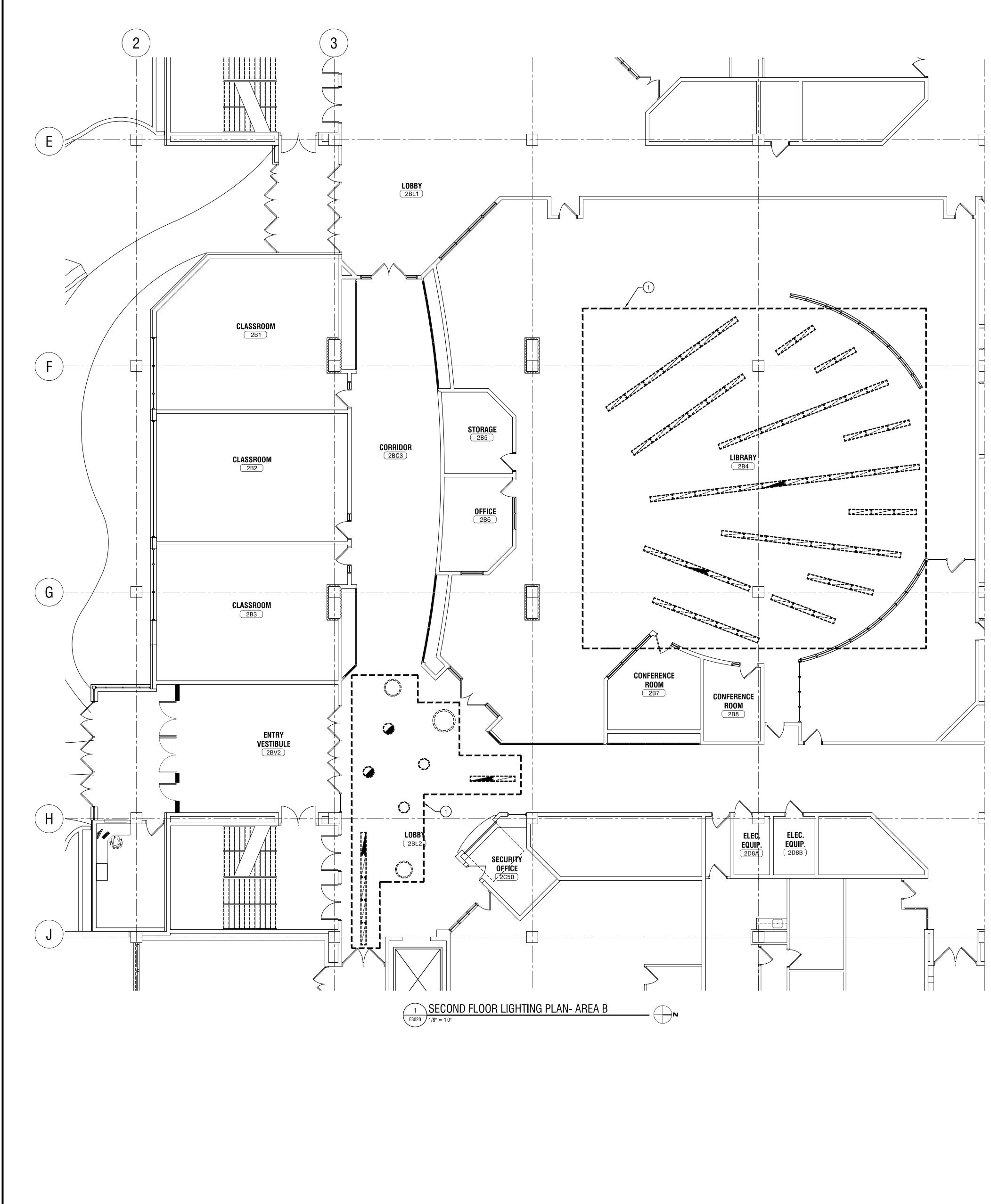
Razak Associates BRANCER BROWN S55 Penbrooke Drive • Penfield, NY 14526 main: 585.388.2000 • fax: 585.388.2007

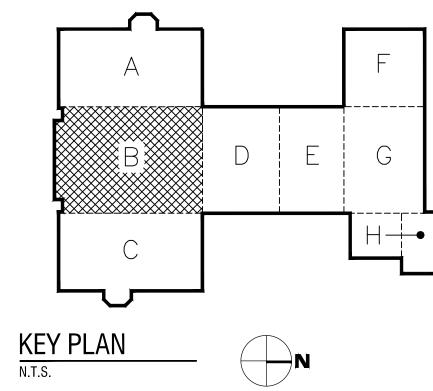
300 State Street, Suite 201 Rochester, NY 14614 585-454-6110

labellapc.com

RSMP

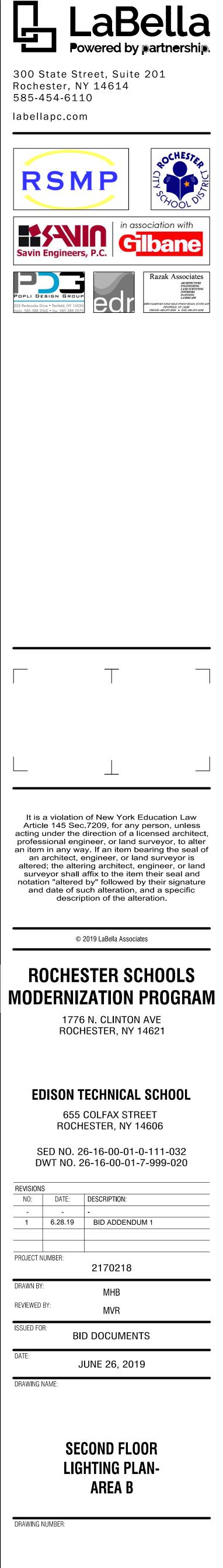
REVISION	S	
NO:	DATE:	DESCRIPTION:
_	-	-
1	6.28.19	BID ADDENDUM 1
PROJECT N	IUMBER:	
		2170218
DRAWN BY		
		MHB
REVIEWED BY:		MVR
ISSUED FO	R: BII	D DOCUMENTS
	DI	DOCOMENTO
DATE:		
		LINE 26 2019

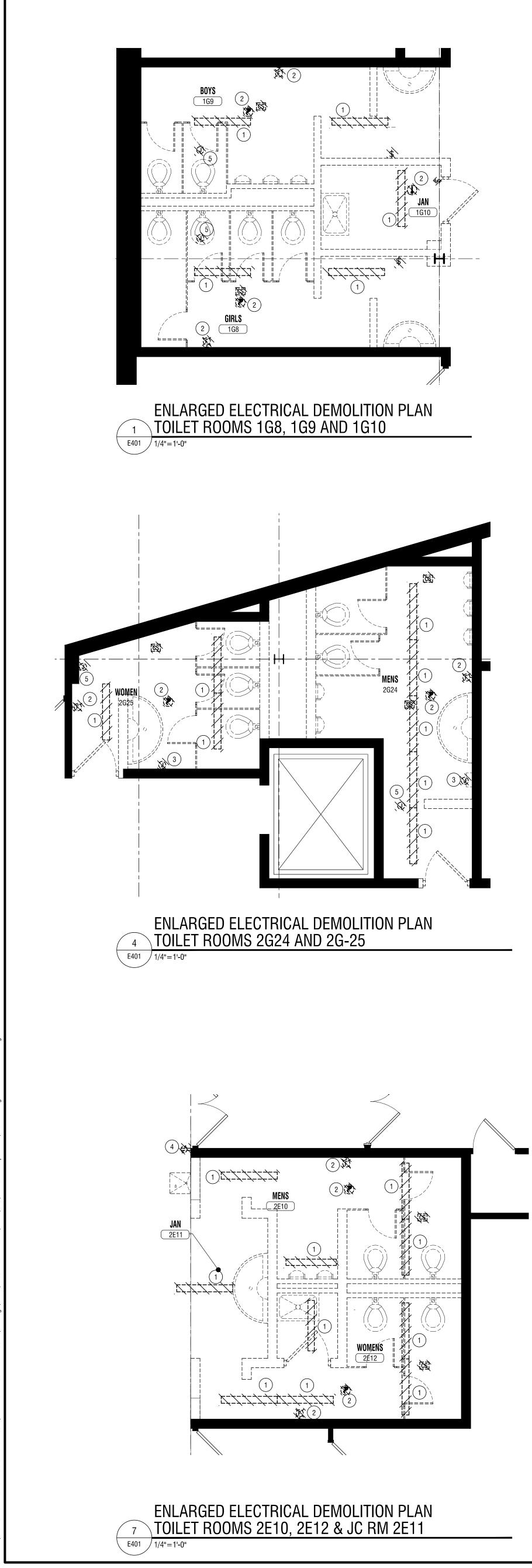

JUNE 20, 2019

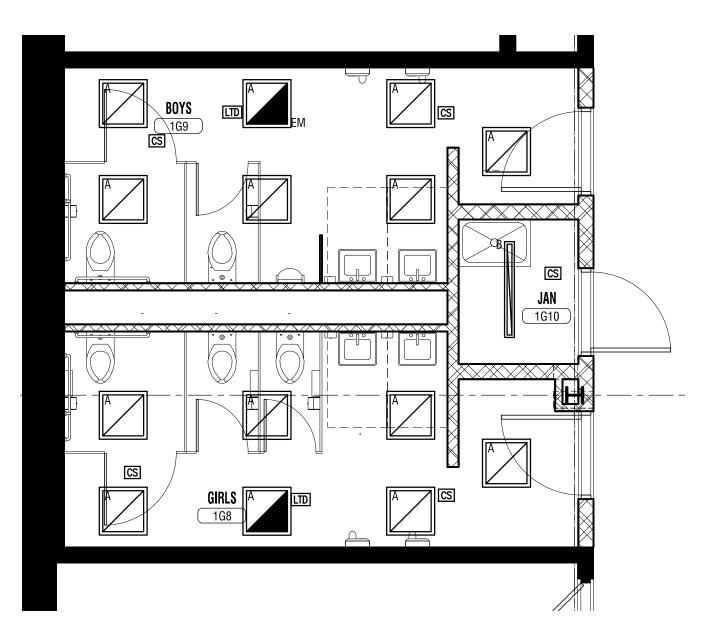

DRAWING NAME:

ROOF AND PENTHOUSE 1 Electrical plan

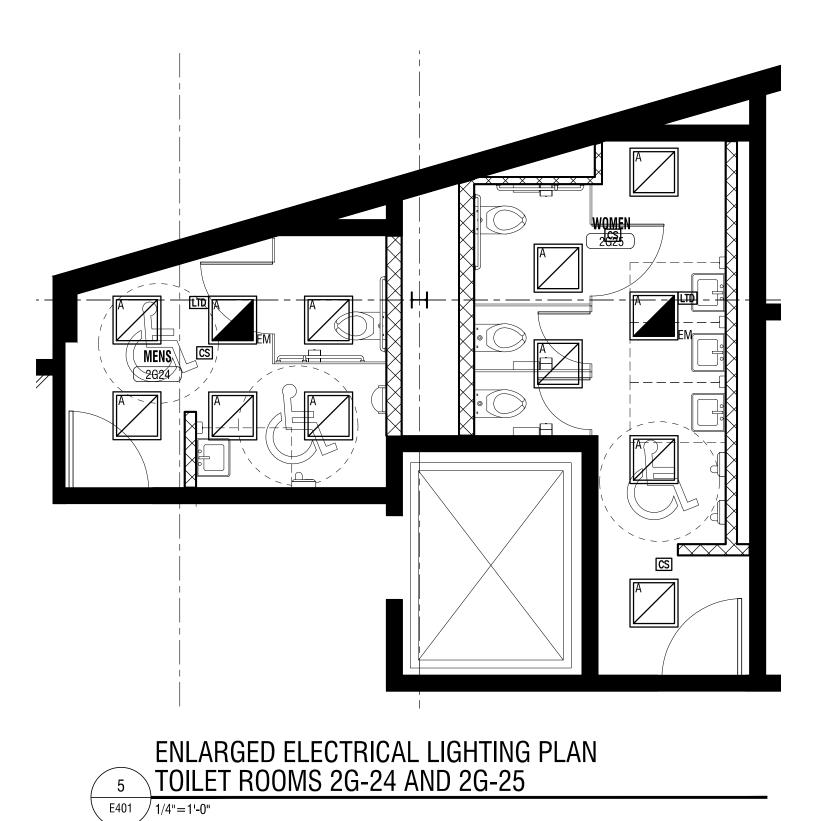
DRAWING NUMBER:

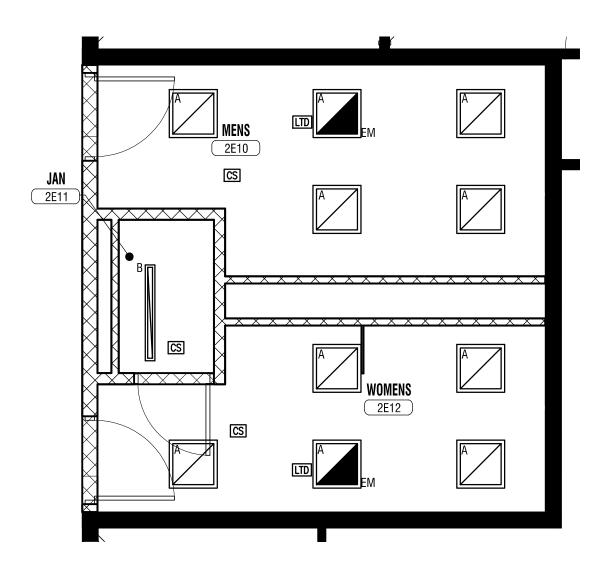


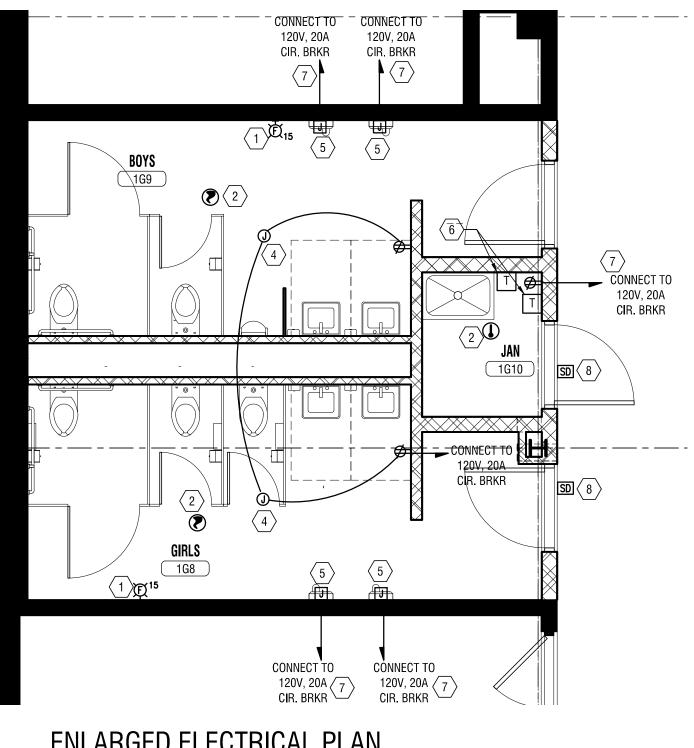



ELECTRIC DEMOLITION KEY NOTES:

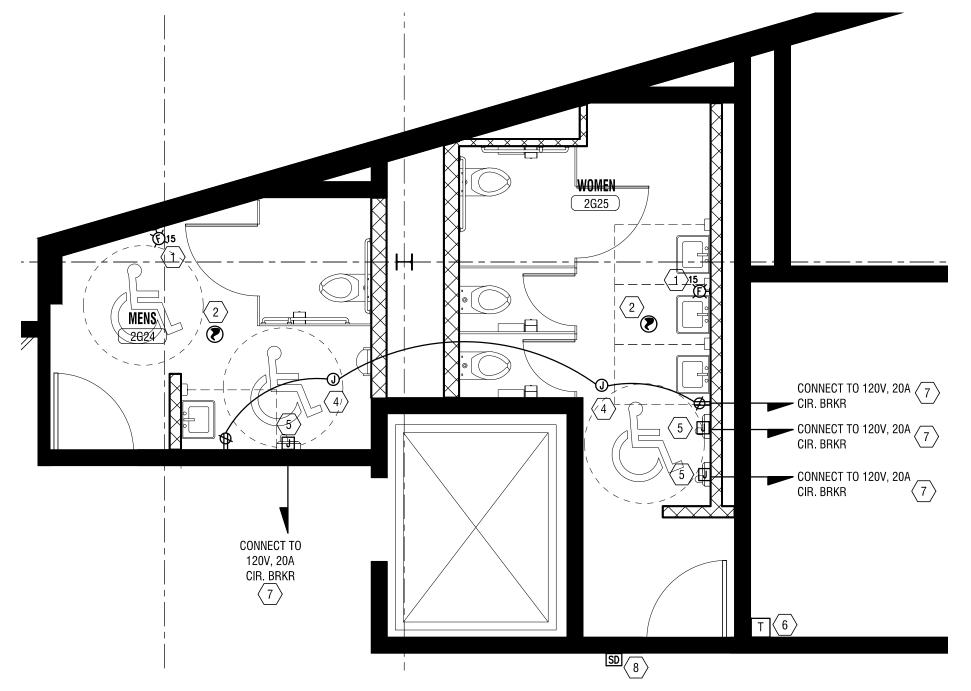
1 DISCONNECT AND REMOVE AREA LIGHTING THAT WILL INTERFERE WITH NEW CEILING WORK. REINSTALL LUMINAIRES PROVIDING NEW SUPPORTS AS NECESSARY.

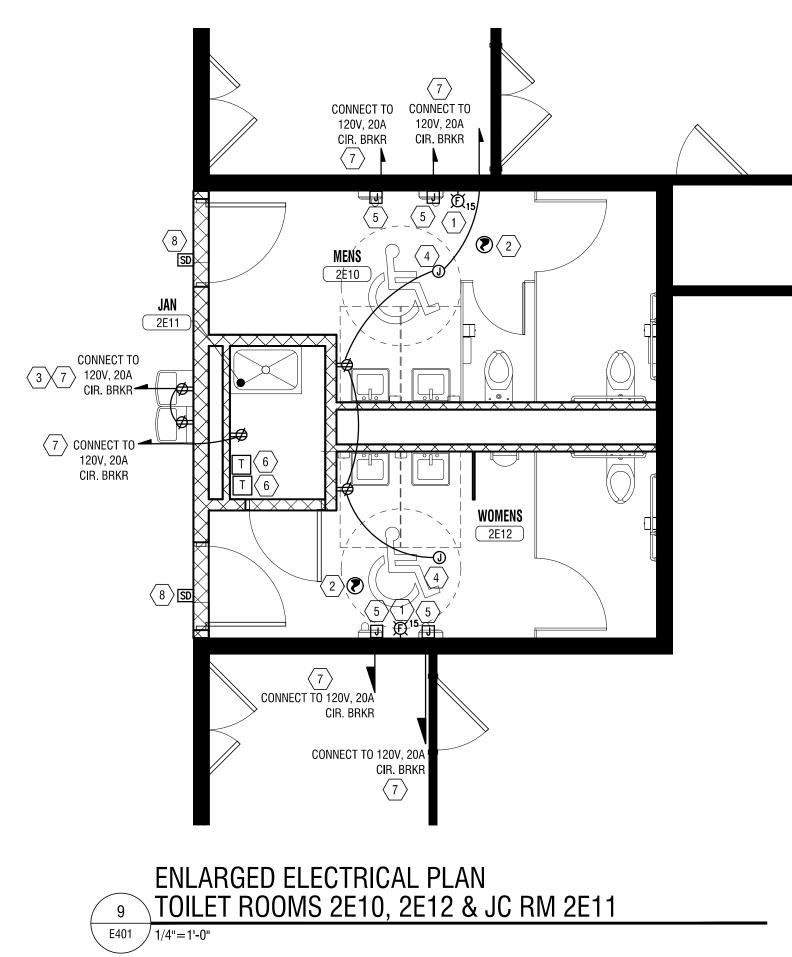


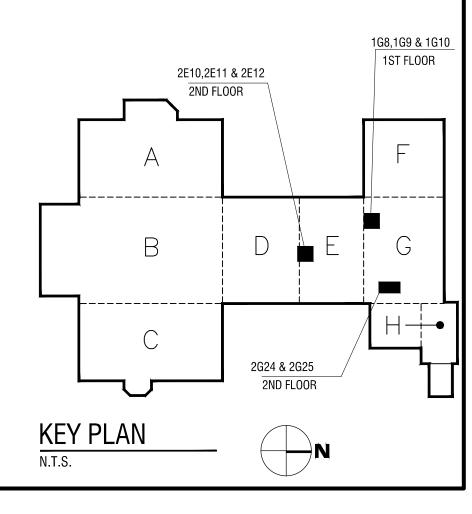

E302B



ENLARGED LIGHTING PLAN ² TOILET ROOMS 1G8, 1G9 AND 1G10 E401 / 1/4"=1'-0"




ENLARGED ELECTRICAL LIGHTING PLAN TOILET ROOMS 2E10, 2E12 & JC RM 2E11 E401 1/4"=1'-0"



ENLARGED ELECTRICAL PLAN <u>6</u> TOILET ROOMS 2G-24 AND 2G-25

- **ELECTRIC DEMOLITION NOTES:**
- (1) DISCONNECT AND REMOVE EXISTING LIGHT FIXTURES AND ASSOCIATED LIGHTING CONTROLS. REUSE EXISTING CIRCUITING.
- 2 REMOVE EXISTING FIRE ALARM DEVICES AND SAVE FOR REUSE. REUSE EXISTING COVERS AND WIREGUARDS WHERE POSSIBLE. COIL WIRING ABOVE THE CEILING FOR REUSE.
- 3 REMOVE ELECTRICAL CONNECTION TO EXISTING HAND DRYER. SAVE CIRCUIT FOR REUSE.
- (4) REMOVE EXISTING RECEPTACLE .
- (5) DISCONNECT POWER FROM EXISTING EXHAUST FAN. SAVE EXISTING WIRING AND CONDUITS FOR REUSE FOR THE NEW EXHAUST FAN INSTALLATION.
- ELECTRIC KEYED NOTES:
- $\langle 1
 angle$ re-install addressable light strobe. Extend wiring as
- NECESSARY.
- $\langle 2 \rangle$ RE-INSTALL ADDRESSABLE HEAT/SMOKE DETECTOR, WITH WIRE GUARD.
- 3 PROVIDE GFCI RECEPTACLE FOR DRINKING FOUNTAIN, COORDINATE EXACT LOCATION AND ELEVATION WITH PLUMBING CONTRACTOR.
- \langle 4 \rangle provide junction box above ceiling for water closet/urinal and AUTO FLUSH VALVE TRANSFORMER. CIRCUIT AS INDICATED. COORDINATE EXACT LOCATION WITH PLUMBING CONTRACTOR.
- 5 PROVIDE POWER FOR HAND DRYER. CIRCUIT AS INDICATED. COORDINATE EXACT LOCATION WITH GENERAL CONTRACTOR.
- (6) PROVIDE CONTROL TRANSFORMER FOR FIRE DAMPER, PRIMARY 120/277VAC, SECONDARY 24VAC, 40VA MAXIMUM. MOUNT TRANSFORMER NEAR FIRE DUMPER. CONNECT TO NEAREST 120V OR 277V, 20A EMERGENCY LIGHTING CIRCUIT. PROVIDE POWER TO ACTUATOR CONTROLLER THRU A FIRE SYSTEM RELAY- MOUNT RELAY ADJACENT TO DAMPER. PROGRAM RELAY TO CLOSE DAMPER WHEN ANY SPACE SMOKE DETECTOR GOES INTO ALARM. COORDINATE WIRING AND INSTALLATION WITH MECHANICAL CONTRACTOR.
- $\langle 7 \rangle$ CIRCUIT TO AVAILABLE SPACE IN NEAREST POWER PANEL 120/208V. PROVIDE 20A-1P CIRCUIT BREAKER AS REQUIRED. PROVIDE (2)#12 AND (1)#12 GRN IN 1/2" EMT. COORDINATE IN FIELD.
- $\langle 8 \rangle$ POWER TO SMOKE DAMPER ACTUATORS MUST BE THROUGH A FIRE SYSTEM RELAY. RELAY TO BE MOUNTED ADJACENT TO DAMPER, UPON NEAREST CORRIDOR SMOKE DETECTOR ACTIVATION. RELAY SENDS ACTUATOR SIGNAL TO CLOSE DAMPER. REFER TO MECHANICAL PLANS FOR FIRE SMOKE DAMPER LOCATION,

DRAWING NUMBER:

ENLARGED **ELECTRICAL PLANS** 1 ST & 2 ND FLR

DRAWING NAME:

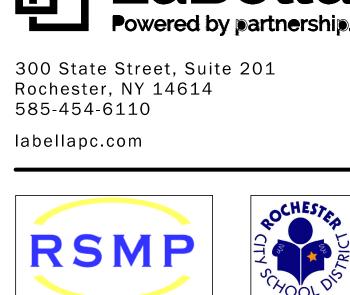
REVISION	S	
NO:	DATE:	DESCRIPTION:
_	-	-
1	6.28.19	BID ADDENDUM 1
PROJECT N	IUMBER:	0170010
		2170218
DRAWN BY		МНВ
REVIEWED	RY	
		MVR
ISSUED FO		
ISSUED FO		D DOCUMENTS
ISSUED FO	BI	

SED NO. 26-16-00-01-0-111-032 DWT NO. 26-16-00-01-7-999-020

655 COLFAX STREET ROCHESTER, NY 14606

EDISON TECHNICAL SCHOOL

1776 N. CLINTON AVE ROCHESTER, NY 14621


ROCHESTER SCHOOLS MODERNIZATION PROGRAM

© 2019 LaBella Associates

an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of

RSM **In association with Gibane** in association with Razak Associates ARCHITECTU ENGINEERIN LAND SURVE INTERIORS PLANNING LANDSCAPE ear 2060 FAIRPORT-NINE MILE FOINT ROAD, SUITE 410 PENFIELD, NY 14526 PHONE: 585-377.3550 + FAX: 585-377.3559

